
John W Weisel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7002544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonmalignant portal vein thrombi in patients with cirrhosis consist of intimal fibrosis with or without a fibrinâ€rich thrombus. Hepatology, 2022, 75, 898-911.	7.3	28
2	Incorporation of Fibrin, Platelets, and Red Blood Cells into a Coronary Thrombus in Time and Space. Thrombosis and Haemostasis, 2022, 122, 434-444.	3.4	9
3	Percutaneous delivery of self-propelling hemostatic powder for managing non-compressible abdominal hemorrhage: a proof-of-concept study in swine. Injury, 2022, 53, 1603-1609.	1.7	7
4	Extent of intravital contraction of arterial and venous thrombi andÂpulmonary emboli. Blood Advances, 2022, 6, 1708-1718.	5.2	11
5	Novel characteristics of soluble fibrin: hypercoagulability and acceleration of blood sedimentation rate mediated by its generation of erythrocyte-linked fibers. Cell and Tissue Research, 2022, 387, 479-491.	2.9	2
6	Computational biomechanical modeling of fibrin networks and platelet-fiber network interactions. Current Opinion in Biomedical Engineering, 2022, 22, 100369.	3.4	8
7	The Story of the Fibrin(ogen) αC-Domains: Evolution of Our View on Their Structure and Interactions. Thrombosis and Haemostasis, 2022, 122, 1265-1278.	3.4	12
8	Contribution of septins to human platelet structure and function. IScience, 2022, , 104654.	4.1	4
9	Biomechanical origins of inherent tension in fibrin networks. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105328.	3.1	6
10	Chronic Immune Platelet Activation Is Followed by Platelet Refractoriness and Impaired Contractility. International Journal of Molecular Sciences, 2022, 23, 7336.	4.1	6
11	Biological and Clinical Consequences of Integrin Binding via a Rogue RGD Motif in the SARS CoV-2 Spike Protein. Viruses, 2021, 13, 146.	3.3	74
12	Obituary for Professor Dr. Jan Evangelista Dyr. Metabolites, 2021, 11, 243.	2.9	0
13	Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid. Biochemistry, 2021, 60, 1722-1730.	2.5	2
14	Effects of Hyperhomocysteinemia on the Platelet-Driven Contraction of Blood Clots. Metabolites, 2021, 11, 354.	2.9	7
15	Coldâ€stored platelets have better preserved contractile function in comparison with room temperatureâ€stored platelets over 21 days. Transfusion, 2021, 61, S68-S79.	1.6	7
16	Fibers Generated by Plasma Des-AA Fibrin Monomers and Protofibril/Fibrinogen Clusters Bind Platelets: Clinical and Nonclinical Implications. TH Open, 2021, 05, e273-e285.	1.4	1
17	Pathologically stiff erythrocytes impede contraction of blood clots. Journal of Thrombosis and Haemostasis, 2021, 19, 1990-2001.	3.8	22
18	Altered platelet and coagulation function in moderate-to-severe COVID-19. Scientific Reports, 2021, 11, 16290.	3.3	24

#	Article	IF	CITATIONS
19	Pathology of lungâ€specific thrombosis and inflammation in COVIDâ€19. Journal of Thrombosis and Haemostasis, 2021, 19, 3062-3072.	3.8	28
20	Cleavage of talin by calpain promotes platelet-mediated fibrin clot contraction. Blood Advances, 2021, 5, 4901-4909.	5.2	8
21	Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture. Acta Biomaterialia, 2021, 131, 355-369.	8.3	13
22	Visualizing thrombosis to improve thrombus resolution. Research and Practice in Thrombosis and Haemostasis, 2021, 5, 38-50.	2.3	20
23	Automated Fiber Diameter and Porosity Measurements of Plasma Clots in Scanning Electron Microscopy Images. Biomolecules, 2021, 11, 1536.	4.0	9
24	Pathologically stiff erythrocytes impede contraction of blood clots: Reply to comment. Journal of Thrombosis and Haemostasis, 2021, 19, 2894-2895.	3.8	0
25	Fibrinogen and Fibrin. Sub-Cellular Biochemistry, 2021, 96, 471-501.	2.4	38
26	In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation. Journal of Autoimmunity, 2020, 107, 102355.	6.5	23
27	Age-Dependent Differential Staining of Fibrin in Blood Clots and Thrombi. BioNanoScience, 2020, 10, 370-374.	3.5	9
28	Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke. Stroke, 2020, 51, 3640-3650.	2.0	40
29	An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111321.	5.0	13
30	Impaired contraction of blood clots precedes and predicts postoperative venous thromboembolism. Scientific Reports, 2020, 10, 18261.	3.3	18
31	Rupture of blood clots: Mechanics and pathophysiology. Science Advances, 2020, 6, eabc0496.	10.3	54
32	Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling. Soft Matter, 2020, 16, 8272-8283.	2.7	13
33	Accelerated Spatial Fibrin Growth and Impaired Contraction of Blood Clots in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 2020, 21, 9434.	4.1	12
34	Use of electron microscopy to study platelets and thrombi. Platelets, 2020, 31, 580-588.	2.3	14
35	The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Scientific Reports, 2020, 10, 5112.	3.3	145
36	Structure, mechanical properties, and modeling of cyclically compressed pulmonary emboli. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 105, 103699.	3.1	14

#	Article	IF	CITATIONS
37	Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering. Acta Biomaterialia, 2020, 104, 39-52.	8.3	17
38	Platelet Activation in Heparin-Induced Thrombocytopenia is Followed by Platelet Death via Complex Apoptotic and Non-Apoptotic Pathways. International Journal of Molecular Sciences, 2020, 21, 2556.	4.1	7
39	Studies of combined NO-eluting/CD47-modified polyurethane surfaces for synergistic enhancement of biocompatibility. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111060.	5.0	8
40	Abnormal clot microstructure formed in blood containing HIT-like antibodies. Thrombosis Research, 2020, 193, 25-30.	1.7	3
41	Fibrous gels modelled as fluid-filled continua with double-well energy landscape. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200643.	2.1	7
42	Lytic Susceptibility, Structure, and Mechanical Properties of Fibrin in Systemic Lupus Erythematosus. Frontiers in Immunology, 2019, 10, 1626.	4.8	19
43	Platelet factor 4-containing immune complexes induce platelet activation followed by calpain-dependent platelet death. Cell Death Discovery, 2019, 5, 106.	4.7	35
44	Could Some Nonhemostatic Plasma Proteins Serve as Refuse Collectors for Fibrin(ogen)?. Thrombosis and Haemostasis, 2019, 119, 1900-1900.	3.4	1
45	Interrelationships between structure and function during the hemostatic response to injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2243-2252.	7.1	54
46	Unique transmembrane domain interactions differentially modulate integrin αvβ3 and αIIbβ3 function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12295-12300.	7.1	7
47	Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load. Acta Biomaterialia, 2019, 94, 514-523.	8.3	22
48	Fatal dysfunction and disintegration of thrombin-stimulated platelets. Haematologica, 2019, 104, 1866-1878.	3.5	27
49	Factor XIII topology: organization of B subunits and changes with activation studied with singleâ€molecule atomic force microscopy. Journal of Thrombosis and Haemostasis, 2019, 17, 737-748.	3.8	20
50	Premorbid Hemostasis in Women with a History of Pregnancy Loss. Thrombosis and Haemostasis, 2019, 119, 1994-2004.	3.4	16
51	Blood clot contraction differentially modulates internal and external fibrinolysis. Journal of Thrombosis and Haemostasis, 2019, 17, 361-370.	3.8	57
52	Differential Sensitivity of Various Markers of Platelet Activation with Adenosine Diphosphate. BioNanoScience, 2019, 9, 53-58.	3.5	3
53	Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood, 2019, 133, 481-493.	1.4	48
54	Differential sensitivity of various markers of platelet activation with adenosine diphosphate. BioNanoScience, 2019, 9, 53-58.	3.5	1

#	Article	IF	CITATIONS
55	Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clinical Science, 2018, 132, 243-254.	4.3	34
56	The Role of von Willebrand Factor, ADAMTS13, and Cerebral Artery Thrombus Composition in Patient Outcome Following Mechanical Thrombectomy for Acute Ischemic Stroke. Medical Science Monitor, 2018, 24, 3929-3945.	1.1	34
57	Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Scientific Reports, 2018, 8, 17907.	3.3	53
58	Blood Clot Contraction is Reduced in Sickle Cell Disease due to Increased Rigidity of Erythrocytes. Biophysical Journal, 2018, 114, 540a-541a.	0.5	1
59	Atomic Structural Models of Fibrin Oligomers. Structure, 2018, 26, 857-868.e4.	3.3	33
60	Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8575-8580.	7.1	23
61	Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism. TH Open, 2018, 02, e104-e115.	1.4	46
62	Fatal Dysfunction and Fragmentation of Thrombin-Stimulated Platelets. Blood, 2018, 132, 521-521.	1.4	0
63	Fibrinolysis of Contracted Blood Clots Depends on Whether Plasminogen Activator Acts from inside or Outside. Blood, 2018, 132, 3773-3773.	1.4	0
64	Active Calpain Promotes Fibrin Clot Contraction By Strengthening the Coupling of Fibrin-Bound αIIbβ3 to the Platelet Cytoskeleton. Blood, 2018, 132, 1128-1128.	1.4	0
65	Spatial Structure of Plasma Coagulation Factor XIII and Changes with Activation. Blood, 2018, 132, 19-19.	1.4	1
66	Fibrin Formation, Structure and Properties. Sub-Cellular Biochemistry, 2017, 82, 405-456.	2.4	434
67	Thrombus composition in sudden cardiac death from acute myocardial infarction. Resuscitation, 2017, 113, 108-114.	3.0	24
68	Interplay of Platelet Contractility and Elasticity of Fibrin/Erythrocytes in Blood Clot Retraction. Biophysical Journal, 2017, 112, 714-723.	0.5	41
69	Contraction of Blood Clots Is Impaired in Acute Ischemic Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 271-279.	2.4	87
70	Role of red blood cells in haemostasis and thrombosis. ISBT Science Series, 2017, 12, 176-183.	1.1	136
71	Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nature Communications, 2017, 8, 1274.	12.8	115
72	Morphometric characterization of fibrinogen's αC regions and their role in fibrin self-assembly and molecular organization. Nanoscale, 2017, 9, 13707-13716.	5.6	35

#	Article	IF	CITATIONS
73	Molecular and Physical Mechanisms of Fibrinolysis and Thrombolysis from Mathematical Modeling and Experiments. Scientific Reports, 2017, 7, 6914.	3.3	48
74	Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. Journal of the Royal Society Interface, 2017, 14, 20170441.	3.4	54
75	Strong Binding of Platelet Integrin αIlbβ3 to Fibrin Clots: Potential Target to Destabilize Thrombi. Scientific Reports, 2017, 7, 13001.	3.3	27
76	Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood. Acta Biomaterialia, 2017, 60, 275-290.	8.3	29
77	Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression. Scientific Reports, 2017, 7, 5149.	3.3	25
78	Fibrin mechanical properties and their structural origins. Matrix Biology, 2017, 60-61, 110-123.	3.6	145
79	Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA. BioNanoScience, 2017, 7, 132-147.	3.5	0
80	Clot stability as a determinant of effective factor VIII replacement in hemophilia A. Research and Practice in Thrombosis and Haemostasis, 2017, 1, 231-241.	2.3	30
81	Whole blood clot optical clearing for nondestructive 3D imaging and quantitative analysis. Biomedical Optics Express, 2017, 8, 3671.	2.9	12
82	Conformational Flexibility and Self-Association of Fibrinogen in Concentrated Solutions. Journal of Physical Chemistry B, 2017, 121, 7833-7843.	2.6	29
83	Rapid Evaluation of Platelet Function With T2 Magnetic Resonance. American Journal of Clinical Pathology, 2016, 146, 681-693.	0.7	9
84	Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation. Biophysical Journal, 2016, 110, 1400-1410.	0.5	101
85	Enhanced biocompatibility of CD47-functionalized vascular stents. Biomaterials, 2016, 87, 82-92.	11.4	37
86	What Is the Biological and Clinical Relevance of Fibrin?. Seminars in Thrombosis and Hemostasis, 2016, 42, 333-343.	2.7	96
87	Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood, 2016, 127, 149-159.	1.4	133
88	Structural Basis of Interfacial Flexibility in Fibrin Oligomers. Structure, 2016, 24, 1907-1917.	3.3	35
89	Foam-like compression behavior of fibrin networks. Biomechanics and Modeling in Mechanobiology, 2016, 15, 213-228.	2.8	50
90	Apoptosis Might Contribute to the Thrombocytopenia in Heparin-Induced Thrombocytopenia. Blood, 2016, 128, 2545-2545.	1.4	0

#	Article	IF	CITATIONS
91	Circulating Microparticles Alter Formation, Structure and Properties of Fibrin Clots. Scientific Reports, 2015, 5, 17611.	3.3	76
92	Not fibrin(ogen), but fibrinogen or fibrin. Blood, 2015, 126, 1977-1978.	1.4	7
93	Clot Contraction-Mediated Erythrocyte Packing Is Significantly Altered in Sickle Cell Disease. Blood, 2015, 126, 215-215.	1.4	4
94	Role of Red Cells in Thrombosis and Hemostasis. Blood, 2015, 126, SCI-39-SCI-39.	1.4	1
95	Membrane Remodeling By Pathogenic Antibodies Underlies Monocyte Activation in Heparin-Induced Thrombocytopenia. Blood, 2015, 126, 2244-2244.	1.4	1
96	The Platelet Integrin alphallbbeta3 Differentially Interacts with Fibrin and Fibrinogen. Blood, 2015, 126, 3444-3444.	1.4	0
97	T2 Magnetic Resonance: A Diagnostic Platform for Studying Integrated Hemostasis in Whole Blood—Proof of Concept. Clinical Chemistry, 2014, 60, 1174-1182.	3.2	26
98	An Automated Approach for Fibrin Network Segmentation and Structure Identification in 3D Confocal Microscopy Images. , 2014, , .		6
99	Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood, 2014, 123, 1596-1603.	1.4	311
100	Monitoring coagulopathies in fluid resuscitation for trauma or surgery. Thrombosis Research, 2014, 134, 535-536.	1.7	11
101	Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials, 2014, 35, 6739-6749.	11.4	110
102	Microparticles Modulate Formation, Structure, and Properties of Fibrin Clots. Blood, 2014, 124, 2807-2807.	1.4	1
103	Effects of Platelets and Erythrocytes on the Dynamic Size and Mechanical Properties of Blood Clots during Contraction. Blood, 2014, 124, 4225-4225.	1.4	0
104	Blood Clot Contraction Dynamics Studied with an Automated Analyzer System. Blood, 2014, 124, 2796-2796.	1.4	0
105	Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radical Biology and Medicine, 2013, 65, 411-418.	2.9	83
106	Adaptation of fibrous biopolymers to recurring increasing strains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12164-12165.	7.1	3
107	Mechanisms of fibrin polymerization and clinical implications. Blood, 2013, 121, 1712-1719.	1.4	371
108	Resolving Two-dimensional Kinetics of the Integrin αIlbβ3-Fibrinogen Interactions Using Binding-Unbinding Correlation Spectroscopy. Journal of Biological Chemistry, 2012, 287, 35275-35285.	3.4	36

#	Article	IF	CITATIONS
109	The α-Helix to β-Sheet Transition in Stretched and Compressed Hydrated Fibrin Clots. Biophysical Journal, 2012, 103, 1020-1027.	0.5	213
110	On the Mechanism of $\hat{1}\pm C$ Polymer Formation in Fibrin. Biochemistry, 2012, 51, 2526-2538.	2.5	45
111	Mechanical Transition from α-Helical Coiled Coils to β-Sheets in Fibrin(ogen). Journal of the American Chemical Society, 2012, 134, 20396-20402.	13.7	95
112	Fibrin Generation in Heparin-Induced Thrombocytopenia (HIT): Pathomechanistic Background for Novel Therapy and Prophylaxis. Blood, 2012, 120, 635-635.	1.4	2
113	Dissociation of Bimolecular αIIbβ3-Fibrinogen Complex under a Constant Tensile Force. Biophysical Journal, 2011, 100, 165-173.	0.5	58
114	Composition of Coronary Thrombus in Acute Myocardial Infarction. Journal of the American College of Cardiology, 2011, 57, 1359-1367.	2.8	329
115	Structure, Stability, and Interaction of Fibrin $\hat{I}\pm C$ -Domain Polymers. Biochemistry, 2011, 50, 8028-8037.	2.5	40
116	Visualization and identification of the structures formed during early stages of fibrin polymerization. Blood, 2011, 117, 4609-4614.	1.4	52
117	Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood, 2011, 117, 4964-4967.	1.4	32
118	Mechanism of Fibrin(ogen) Forced Unfolding. Structure, 2011, 19, 1615-1624.	3.3	114
119	Protein unfolding accounts for the unusual mechanical behavior of fibrin networks. Acta Biomaterialia, 2011, 7, 2374-2383.	8.3	75
120	"Ta panta rhei― Blood, 2010, 116, 3123-3124.	1.4	7
121	Hypodysfibrinogenaemia due to production of mutant fibrinogen alpha-chains lacking fibrinopeptide A and polymerisation knob â€~A'. Thrombosis and Haemostasis, 2010, 104, 990-997.	3.4	24
122	Time-Dependent Single-Molecule Interactions of the Platelet Integrin αIIbβ3 with Cyclic Arg-Gly-Asp and the Fibrin(ogen) γC-Dodecapeptide. Blood, 2010, 116, 2103-2103.	1.4	2
123	Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thrombosis and Haemostasis, 2009, 102, 1169-1175.	3.4	226
124	Fibrin gels and their clinical and bioengineering applications. Journal of the Royal Society Interface, 2009, 6, 1-10.	3.4	537
125	Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water. Science, 2009, 325, 741-744.	12.6	346
126	Visualizing the Molecular and Cellular Basis of Heparin Induced Thrombocytopenia Blood, 2009, 114, 228-228.	1.4	0

#	Article	IF	CITATIONS
127	Platelets Lacking PIP5KlÎ ³ Have Impaired Cytoskeletal Dynamics and Adhesion, but No Defect in Integrin Activation Blood, 2009, 114, 772-772.	1.4	4
128	Interaction of the Integrin αIIbβ3 with Monomeric Fibrin at the Single-Molecule Level Blood, 2009, 114, 4018.	1.4	0
129	Enigmas of Blood Clot Elasticity. Science, 2008, 320, 456-457.	12.6	71
130	Proteolytic Cleavage of Endothelial Cell-Bound Von Willebrand Factor Polymers by ADAMTS13 in the Absence of Flow Shear Stress. Blood, 2008, 112, 3913-3913.	1.4	2
131	Measurement of the Lifetime of Bonds Between αIIbβ3 and Fibrinogen Using Constant Unbinding Forces Generated by Optical Tweezers. Blood, 2008, 112, 254-254.	1.4	0
132	Loss of Individual PIP5KI Isoforms Demonstrate That Spatial PIP2 Synthesis Is Required for Platelet Second Messenger Formation & Integrity of the Actin Cytoskeleton. Blood, 2008, 112, 109-109.	1.4	0
133	Functional analysis of fibrin \hat{I}^3 -chain cross-linking by activated factor XIII: determination of a cross-linking pattern that maximizes clot stiffness. Blood, 2007, 110, 902-907.	1.4	101
134	Direct Evidence for Specific Interactions of the Fibrinogen $\hat{I}\pm C$ -Domains with the Central E Region and with Each Other. Biochemistry, 2007, 46, 9133-9142.	2.5	98
135	Forced Unfolding of Coiled-Coils in Fibrinogen by Single-Molecule AFM. Biophysical Journal, 2007, 92, L39-L41.	0.5	134
136	Fibronectin comes to the fore in thrombus growth. Blood, 2006, 107, 3419-3420.	1.4	1
137	Structure and Properties of Clots from Fibrinogen Bicêtre II (γ308 Asn→Lys). Annals of the New York Academy of Sciences, 2006, 936, 125-128.	3.8	2
138	PIP5KIÎ ³ Knockout Megakaryocytes Have Defects in Their Cytoskeleton & Demarcation Membrane System, yet Form Proplatlets & Platelets Blood, 2006, 108, 1793-1793.	1.4	0
139	Effects of Impaired Fibrinopeptide A Cleavage on Fibrin Clot Structure: Studies with an Aα R16C Dysfibrinogen Blood, 2006, 108, 1617-1617.	1.4	0
140	Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level. Blood, 2005, 106, 2944-2951.	1.4	109
141	The αC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood, 2005, 106, 3824-3830.	1.4	145
142	The elasticity of an individual fibrin fiber in a clot. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9133-9137.	7.1	230
143	Fibrinogen and Fibrin. Advances in Protein Chemistry, 2005, 70, 247-299.	4.4	689
144	Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia. Blood, 2005, 105, 131-138.	1.4	272

#	Article	IF	CITATIONS
145	Mice Lacking PIP5Kβ or PIP5Kγ Have Unique Cytoskeletal Changes within Their Megakaryocytes & Platelets Blood, 2005, 106, 380-380.	1.4	1
146	The mechanical properties of fibrin for basic scientists and clinicians. Biophysical Chemistry, 2004, 112, 267-276.	2.8	329
147	Multi-Step Fibrinogen-αIIbβ3 Binding/Unbinding Revealed at the Single Molecule Level Using Laser Tweezers Blood, 2004, 104, 623-623.	1.4	0
148	Protein–protein unbinding induced by force: single-molecule studies. Current Opinion in Structural Biology, 2003, 13, 227-235.	5.7	133
149	Dynamic Changes of Fibrin Architecture during Fibrin Formation and Intrinsic Fibrinolysis of Fibrin-rich Clots. Journal of Biological Chemistry, 2003, 278, 21331-21335.	3.4	107
150	Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proceedings of the United States of America, 2002, 99, 7426-7431.	7.1	186
151	Binding of a fibrinogen mimetic stabilizes integrin αIIbβ3's open conformation. Protein Science, 2001, 10, 1614-1626.	7.6	37
152	The Structure and Function of the αC Domains of Fibrinogen. Annals of the New York Academy of Sciences, 2001, 936, 312-327.	3.8	135
153	Clot Lysis of Variant Recombinant Fibrinogens Confirms that Fiber Diameter is a Major Determinant of Lysis Rate. Annals of the New York Academy of Sciences, 2001, 936, 331-334.	3.8	8
154	Antifibrinogen IgG, Fibrinogen, and Clq Complexes Circulating in a Hypodysfibrinogenemic Proband. Annals of the New York Academy of Sciences, 2001, 936, 611-616.	3.8	4
155	Structural Studies of Fibrinolysis: How to Disassemble a Clot. Microscopy and Microanalysis, 2000, 6, 550-551.	0.4	0
156	Structural Origins of Fibrin Clot Rheology. Biophysical Journal, 1999, 77, 2813-2826.	0.5	476
157	Structural Studies of Fibrinolysis by Electron and Light Microscopy. Thrombosis and Haemostasis, 1999, 82, 277-282.	3.4	56
158	Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels. Journal of Biomedical Materials Research Part B, 1998, 40, 551-559.	3.1	76
159	Structural Studies of Fibrinolysis by Electron Microscopy. Blood, 1998, 92, 4721-4729.	1.4	86
160	Multiple Approaches to Visualizing Fibrin Clot Structure and Assembly. Microscopy and Microanalysis, 1997, 3, 329-330.	0.4	0
161	Simultaneous Occurrence of Human Antibodies Directed against Fibrinogen, Thrombin, and Factor V Following Exposure to Bovine Thrombin: Effects on Blood Coagulation, Protein C Activation and Platelet Function. Thrombosis and Haemostasis, 1997, 77, 343-349.	3.4	63
162	Electron microscope investigation of the early stages of fibrin assembly. Journal of Molecular Biology, 1990, 216, 503-509.	4.2	54