Zhubing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7000738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human cohesin compacts DNA by loop extrusion. Science, 2019, 366, 1345-1349.	12.6	513
2	A Peptide Mimicking VGLL4 Function Acts as a YAP Antagonist Therapy against Gastric Cancer. Cancer Cell, 2014, 25, 166-180.	16.8	476
3	VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Research, 2014, 24, 331-343.	12.0	238
4	Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science, 2020, 368, 1454-1459.	12.6	171
5	Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Research, 2012, 22, 1440-1452.	12.0	112
6	STRIPAK complexes in cell signaling and cancer. Oncogene, 2016, 35, 4549-4557.	5.9	88
7	The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nature Immunology, 2015, 16, 246-257.	14.5	82
8	Exosome cofactor <scp>hMTR</scp> 4 competes with export adaptor <scp>ALYREF</scp> to ensure balanced nuclear <scp>RNA</scp> pools for degradation and export. EMBO Journal, 2017, 36, 2870-2886.	7.8	82
9	The MST4–MOB4 complex disrupts the MST1–MOB1 complex in the Hippo–YAP pathway and plays a pro-oncogenic role in pancreatic cancer. Journal of Biological Chemistry, 2018, 293, 14455-14469.	3.4	58
10	Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discovery, 2019, 5, 3.	6.7	58
11	DNA-binding mechanism of the Hippo pathway transcription factor TEAD4. Oncogene, 2017, 36, 4362-4369.	5.9	49
12	A nonâ€canonical role of the p97 complex in <scp>RIG</scp> â€l antiviral signaling. EMBO Journal, 2015, 34, 2903-2920.	7.8	45
13	Structure of the MST4 in Complex with MO25 Provides Insights into Its Activation Mechanism. Structure, 2013, 21, 449-461.	3.3	40
14	Structural Mechanism of CCM3 Heterodimerization with GCKIII Kinases. Structure, 2013, 21, 680-688.	3.3	40
15	Striatins Contain a Noncanonical Coiled Coil That Binds Protein Phosphatase 2A A Subunit to Form a 2:2 Heterotetrameric Core of Striatin-interacting Phosphatase and Kinase (STRIPAK) Complex. Journal of Biological Chemistry, 2014, 289, 9651-9661.	3.4	39
16	The Transitional Endoplasmic Reticulum ATPase p97 Regulates the Alternative Nuclear Factor NF-κB Signaling via Partial Degradation of the NF-κB Subunit p100. Journal of Biological Chemistry, 2015, 290, 19558-19568.	3.4	33
17	Structural Insights into Mitochondrial Antiviral Signaling Protein (MAVS)-Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Signaling. Journal of Biological Chemistry, 2015, 290, 26811-26820.	3.4	33
18	Germinal center kinases in immune regulation. Cellular and Molecular Immunology, 2012, 9, 439-445.	10.5	29

ZHUBING SHI

#	Article	IF	CITATIONS
19	Cryo-EM structure of VASH1-SVBP bound to microtubules. ELife, 2020, 9, .	6.0	23
20	Structural and biochemical studies of RIG-I antiviral signaling. Protein and Cell, 2013, 4, 142-154.	11.0	22
21	Structural insights into regulatory mechanisms of MO25-mediated kinase activation. Journal of Structural Biology, 2014, 186, 224-233.	2.8	17
22	Structural Insights into the C1q Domain of Caprin-2 in Canonical Wnt Signaling. Journal of Biological Chemistry, 2014, 289, 34104-34113.	3.4	16
23	Structure of MST2 SARAH domain provides insights into its interaction with RAPL. Journal of Structural Biology, 2014, 185, 366-374.	2.8	14
24	Structural dissection of Hippo signaling. Acta Biochimica Et Biophysica Sinica, 2015, 47, 29-38.	2.0	14
25	MST kinases in innate immune signaling. Cell Stress, 2018, 2, 4-13.	3.2	14
26	Cryo-EM structures of human p97 double hexamer capture potentiated ATPase-competent state. Cell Discovery, 2022, 8, 19.	6.7	10
27	Structure of PCNA from <i>Drosophila melanogaster</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 387-392.	0.7	8
28	The Crystal Structure of Arabidopsis VSP1 Reveals the Plant Class C-Like Phosphatase Structure of the DDDD Superfamily of Phosphohydrolases. PLoS ONE, 2012, 7, e49421.	2.5	7
29	Structural and Biochemical Insights into the Activation Mechanisms of Germinal Center Kinase OSR1. Journal of Biological Chemistry, 2014, 289, 35969-35978.	3.4	7
30	Structure of the kinase domain of Gilgamesh from <i>Drosophila melanogaster</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 438-443.	0.8	4
31	Disruption of the RAG2 zinc finger motif impairs protein stability and causes immunodeficiency. European Journal of Immunology, 2016, 46, 1011-1019.	2.9	3
32	Structure of succinyl-CoA:3-ketoacid CoA transferase from <i>Drosophila melanogaster</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1089-1093.	0.7	3
33	Structure of zebrafish MO25. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 989-993.	0.7	2
34	Crystallization and preliminary crystallographic analysis of recombinant VSP1 fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 201-203.	0.7	1
35	A Peptide Mimicking VGLL4 Function Acts as a YAP Antagonist Therapy against Gastric Cancer. Cancer Cell, 2014, 25, 406.	16.8	1
36	Multiple Functions of Mammalian Germinal Center Kinases. Current Chemical Biology, 2012, 6, 123-133.	0.5	0