Suomeng Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7000342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATAC-seq reveals the landscape of open chromatin and cis-regulatory elements in the Phytophthora sojae genome. Molecular Plant-Microbe Interactions, 2022, , .	2.6	5
2	Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. Phytopathology, 2021, 111, 96-107.	2.2	9
3	Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. New Phytologist, 2021, 229, 3424-3439.	7.3	24
4	The bZIP transcription factor PsBZP32 is involved in cyst germination, oxidative stress response, and pathogenicity of Phytophthora sojae. Phytopathology Research, 2021, 3, .	2.4	8
5	Plant biotic interactions: From fundamental research toward sustainable agriculture. Journal of Integrative Plant Biology, 2021, 63, 275-276.	8.5	1
6	The <i>Phytophthora</i> effector Avh241 interacts with host NDR1â€ike proteins to manipulate plant immunity. Journal of Integrative Plant Biology, 2021, 63, 1382-1396.	8.5	16
7	<i>Phytophthora sojae </i> apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. Plant Physiology, 2021, 187, 321-335.	4.8	15
8	How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. Current Opinion in Plant Biology, 2021, 62, 102027.	7.1	22
9	Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiology Reviews, 2021, 45, .	8.6	12
10	Specific interaction of an RNA-binding protein with the 3′-UTR of its target mRNA is critical to oomycete sexual reproduction. PLoS Pathogens, 2021, 17, e1010001.	4.7	13
11	A new roadmap for the breeding of disease-resistant and high-yield crops. Stress Biology, 2021, 1, 1.	3.1	4
12	An Improved Method for the Identification of Soybean Resistance to Phytophthora sojae Applied to Germplasm Resources from the Huanghuaihai and Dongbei Regions of China. Plant Disease, 2020, 104, 408-413.	1.4	5
13	Editing of an effector gene promoter sequence impacts plant―Phytophthora interaction. Journal of Integrative Plant Biology, 2020, 62, 378-392.	8.5	15
14	Structures of plant resistosome reveal how NLR immune receptors are activated. ABIOTECH, 2020, 1, 147-150.	3.9	5
15	Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Research, 2020, 48, 1790-1799.	14.5	47
16	N <i>-</i> glycosylation shields <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a specific host aspartic protease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27685-27693.	7.1	51
17	Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. Molecular Plant, 2020, 13, 1470-1484.	8.3	49
18	Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genetics, 2020, 16, e1008646.	3.5	29

SUOMENG DONG

#	Article	IF	CITATIONS
19	Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17409-17417.	7.1	55
20	Rapid detection of potato late blight using a loop-mediated isothermal amplification assay. Journal of Integrative Agriculture, 2020, 19, 1274-1282.	3.5	18
21	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	7.1	39
22	Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies. Biochemical Society Transactions, 2020, 48, 2399-2414.	3.4	9
23	Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of <i>Phytophthora capsici</i> and <i>Phytophthora sojae</i> . Environmental Microbiology, 2019, 21, 4537-4547.	3.8	25
24	Polymorphism in natural alleles of the avirulence gene Avr1c is associated with the host adaptation of Phytophthora sojae. Phytopathology Research, 2019, 1, .	2.4	8
25	Phytophthora sojae Effector PsAvh240 Inhibits Host Aspartic Protease Secretion to Promote Infection. Molecular Plant, 2019, 12, 552-564.	8.3	60
26	Natural allelic variations provide insights into host adaptation of <i>Phytophthora</i> avirulence effector PsAvr3c. New Phytologist, 2019, 221, 1010-1022.	7.3	37
27	The <i>Phytophthora sojae </i> <scp>RXLR</scp> effector Avh238 destabilizes soybean Type2 Gm <scp>ACS</scp> s to suppress ethylene biosynthesis and promote infection. New Phytologist, 2019, 222, 425-437.	7.3	63
28	Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nature Communications, 2018, 9, 594.	12.8	142
29	The MADS-box Transcription Factor PsMAD1 Is Involved in Zoosporogenesis and Pathogenesis of Phytophthora sojae. Frontiers in Microbiology, 2018, 9, 2259.	3.5	26
30	Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions. Genome Biology, 2018, 19, 181.	8.8	61
31	Functional Analysis of PsAvr3c Effector Family From Phytophthora Provides Probes to Dissect SKRP Mediated Plant Susceptibility. Frontiers in Plant Science, 2018, 9, 1105.	3.6	6
32	A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. ELife, 2018, 7, .	6.0	60
33	Distinct regions of the <i>Phytophthora</i> essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytologist, 2017, 214, 361-375.	7.3	67
34	A paralogous decoy protects <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a host inhibitor. Science, 2017, 355, 710-714.	12.6	236
35	A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Current Biology, 2017, 27, 981-991.	3.9	120
36	Rapid detection of Colletotrichum gloeosporioides using a loop-mediated isothermal amplification assay. Australasian Plant Pathology, 2017, 46, 493-498.	1.0	12

SUOMENG DONG

#	Article	IF	CITATIONS
37	An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature Communications, 2017, 8, 2051.	12.8	84
38	A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nature Communications, 2016, 7, 11685.	12.8	119
39	PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae. Fungal Biology, 2016, 120, 620-630.	2.5	20
40	Nudix Effectors: A Common Weapon in the Arsenal of Plant Pathogens. PLoS Pathogens, 2016, 12, e1005704.	4.7	43
41	The two-speed genomes of filamentous pathogens: waltz with plants. Current Opinion in Genetics and Development, 2015, 35, 57-65.	3.3	503
42	A <i>Phytophthora sojae</i> Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. Plant Cell, 2015, 27, 2057-2072.	6.6	335
43	The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b. PLoS Pathogens, 2015, 11, e1005139.	4.7	66
44	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	12.6	179
45	The Phytophthora sojae Avr1d Gene Encodes an RxLR-dEER Effector with Presence and Absence Polymorphisms Among Pathogen Strains. Molecular Plant-Microbe Interactions, 2013, 26, 958-968.	2.6	43
46	The NLP Toxin Family in <i>Phytophthora sojae</i> Includes Rapidly Evolving Groups That Lack Necrosis-Inducing Activity. Molecular Plant-Microbe Interactions, 2012, 25, 896-909.	2.6	101
47	The <i>Nicotiana benthamiana</i> Mitogen-Activated Protein Kinase Cascade and WRKY Transcription Factor Participate in Nep1 _{Mo} -Triggered Plant Responses. Molecular Plant-Microbe Interactions, 2012, 25, 1639-1653.	2.6	43
48	The RxLR effector Avh241 from <i>Phytophthora sojae</i> requires plasma membrane localization to induce plant cell death. New Phytologist, 2012, 196, 247-260.	7.3	151
49	A Myb Transcription Factor of Phytophthora sojae, Regulated by MAP Kinase PsSAK1, Is Required for Zoospore Development. PLoS ONE, 2012, 7, e40246.	2.5	33
50	Analysis of polymorphism and transcription of the effector gene <i>Avr1b</i> in <i>Phytophthora sojae</i> isolates from China virulent to <i>Rps1b</i> . Molecular Plant Pathology, 2012, 13, 114-122.	4.2	23
51	Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiology Letters, 2012, 334, 27-34.	1.8	83
52	Transcriptional Programming and Functional Interactions within the <i>Phytophthora sojae</i> RXLR Effector Repertoire Â. Plant Cell, 2011, 23, 2064-2086.	6.6	455
53	Two Host Cytoplasmic Effectors Are Required for Pathogenesis of <i>Phytophthora sojae</i> by Suppression of Host Defenses Â. Plant Physiology, 2011, 155, 490-501.	4.8	100
54	Digital Gene Expression Profiling of the <i>Phytophthora sojae</i> Transcriptome. Molecular Plant-Microbe Interactions, 2011, 24, 1530-1539.	2.6	119

SUOMENG DONG

#	Article	IF	CITATIONS
55	Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity. PLoS Pathogens, 2011, 7, e1002353.	4.7	169
56	Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean. PLoS ONE, 2011, 6, e20172.	2.5	76
57	PsSAK1, a Stress-Activated MAP Kinase of <i>Phytophthora sojae</i> , Is Required for Zoospore Viability and Infection of Soybean. Molecular Plant-Microbe Interactions, 2010, 23, 1022-1031.	2.6	45
58	The Basic Leucine Zipper Transcription Factor Moatf1 Mediates Oxidative Stress Responses and Is Necessary for Full Virulence of the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1053-1068.	2.6	156
59	Distribution, Pathotypes, and Metalaxyl Sensitivity of Phytophthora sojae from Heilongjiang and Fujian Provinces in China. Plant Disease, 2010, 94, 881-884.	1.4	50
60	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	12.6	492
61	The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. Journal of Experimental Botany, 2010, 61, 3799-3812.	4.8	76
62	Copy Number Variation and Transcriptional Polymorphisms of Phytophthora sojae RXLR Effector Genes Avr1a and Avr3a. PLoS ONE, 2009, 4, e5066.	2.5	151
63	The Phytophthora sojae Avirulence Locus Avr3c Encodes a Multi-Copy RXLR Effector with Sequence Polymorphisms among Pathogen Strains. PLoS ONE, 2009, 4, e5556.	2.5	116
64	Green fluorescent protein (GFP) as a vital marker for studying the interaction of Phytophthora sojae and soybean. Science Bulletin, 2009, 54, 2822-2829.	9.0	2
65	The LCB ₂ subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Baxâ€induced cell death. New Phytologist, 2009, 181, 127-146.	7.3	32
66	Mammalian pro-apoptotic bax gene enhances tobacco resistance to pathogens. Plant Cell Reports, 2008, 27, 1559-1569.	5.6	11