Suomeng Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7000342/publications.pdf

Version: 2024-02-01

66 papers 5,266 citations

36 h-index 95266 68 g-index

75 all docs

75 docs citations

75 times ranked 4061 citing authors

#	Article	IF	CITATIONS
1	The two-speed genomes of filamentous pathogens: waltz with plants. Current Opinion in Genetics and Development, 2015, 35, 57-65.	3.3	503
2	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	12.6	492
3	Transcriptional Programming and Functional Interactions within the <i>Phytophthora sojae</i> RXLR Effector Repertoire Â. Plant Cell, 2011, 23, 2064-2086.	6.6	455
4	A <i>Phytophthora sojae</i> Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. Plant Cell, 2015, 27, 2057-2072.	6.6	335
5	A paralogous decoy protects <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a host inhibitor. Science, 2017, 355, 710-714.	12.6	236
6	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	12.6	179
7	Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity. PLoS Pathogens, 2011, 7, e1002353.	4.7	169
8	The Basic Leucine Zipper Transcription Factor Moatf1 Mediates Oxidative Stress Responses and Is Necessary for Full Virulence of the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1053-1068.	2.6	156
9	Copy Number Variation and Transcriptional Polymorphisms of Phytophthora sojae RXLR Effector Genes Avr1a and Avr3a. PLoS ONE, 2009, 4, e5066.	2.5	151
10	The RxLR effector Avh241 from <i>Phytophthora sojae</i> requires plasma membrane localization to induce plant cell death. New Phytologist, 2012, 196, 247-260.	7.3	151
11	Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nature Communications, 2018, 9, 594.	12.8	142
12	A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Current Biology, 2017, 27, 981-991.	3.9	120
13	Digital Gene Expression Profiling of the <i>Phytophthora sojae</i> Transcriptome. Molecular Plant-Microbe Interactions, 2011, 24, 1530-1539.	2.6	119
14	A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nature Communications, 2016, 7, 11685.	12.8	119
15	The Phytophthora sojae Avirulence Locus Avr3c Encodes a Multi-Copy RXLR Effector with Sequence Polymorphisms among Pathogen Strains. PLoS ONE, 2009, 4, e5556.	2.5	116
16	The NLP Toxin Family in <i>Phytophthora sojae</i> Includes Rapidly Evolving Groups That Lack Necrosis-Inducing Activity. Molecular Plant-Microbe Interactions, 2012, 25, 896-909.	2.6	101
17	Two Host Cytoplasmic Effectors Are Required for Pathogenesis of <i>Phytophthora sojae</i> by Suppression of Host Defenses Â. Plant Physiology, 2011, 155, 490-501.	4.8	100
18	An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature Communications, 2017, 8, 2051.	12.8	84

#	Article	IF	CITATIONS
19	Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiology Letters, 2012, 334, 27-34.	1.8	83
20	The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. Journal of Experimental Botany, 2010, 61, 3799-3812.	4.8	76
21	Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean. PLoS ONE, 2011, 6, e20172.	2.5	76
22	Distinct regions of the <i>Phytophthora</i> essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytologist, 2017, 214, 361-375.	7.3	67
23	The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b. PLoS Pathogens, 2015, 11, e1005139.	4.7	66
24	The <i>Phytophthora sojae </i> <scp>RXLR</scp> effector Avh238 destabilizes soybean Type2 Gm <scp>ACS</scp> s to suppress ethylene biosynthesis and promote infection. New Phytologist, 2019, 222, 425-437.	7.3	63
25	Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions. Genome Biology, 2018, 19, 181.	8.8	61
26	Phytophthora sojae Effector PsAvh240 Inhibits Host Aspartic Protease Secretion to Promote Infection. Molecular Plant, 2019, 12, 552-564.	8.3	60
27	A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. ELife, 2018, 7, .	6.0	60
28	Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17409-17417.	7.1	55
29	N <i>-</i> glycosylation shields <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a specific host aspartic protease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27685-27693.	7.1	51
30	Distribution, Pathotypes, and Metalaxyl Sensitivity of Phytophthora sojae from Heilongjiang and Fujian Provinces in China. Plant Disease, 2010, 94, 881-884.	1.4	50
31	Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. Molecular Plant, 2020, 13, 1470-1484.	8.3	49
32	Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Research, 2020, 48, 1790-1799.	14.5	47
33	PsSAK1, a Stress-Activated MAP Kinase of <i>Phytophthora sojae</i> , Is Required for Zoospore Viability and Infection of Soybean. Molecular Plant-Microbe Interactions, 2010, 23, 1022-1031.	2.6	45
34	The <i>Nicotiana benthamiana</i> Mitogen-Activated Protein Kinase Cascade and WRKY Transcription Factor Participate in Nep1 _{Mo} -Triggered Plant Responses. Molecular Plant-Microbe Interactions, 2012, 25, 1639-1653.	2.6	43
35	The Phytophthora sojae Avr1d Gene Encodes an RxLR-dEER Effector with Presence and Absence Polymorphisms Among Pathogen Strains. Molecular Plant-Microbe Interactions, 2013, 26, 958-968.	2.6	43
36	Nudix Effectors: A Common Weapon in the Arsenal of Plant Pathogens. PLoS Pathogens, 2016, 12, e1005704.	4.7	43

#	Article	lF	Citations
37	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	7.1	39
38	Natural allelic variations provide insights into host adaptation of <i>Phytophthora</i> avirulence effector PsAvr3c. New Phytologist, 2019, 221, 1010-1022.	7.3	37
39	A Myb Transcription Factor of Phytophthora sojae, Regulated by MAP Kinase PsSAK1, Is Required for Zoospore Development. PLoS ONE, 2012, 7, e40246.	2.5	33
40	The LCB ₂ subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Baxâ€induced cell death. New Phytologist, 2009, 181, 127-146.	7.3	32
41	Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genetics, 2020, 16, e1008646.	3.5	29
42	The MADS-box Transcription Factor PsMAD1 Is Involved in Zoosporogenesis and Pathogenesis of Phytophthora sojae. Frontiers in Microbiology, 2018, 9, 2259.	3.5	26
43	Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of <i>Phytophthora capsici</i> and <i>Phytophthora sojae</i> Environmental Microbiology, 2019, 21, 4537-4547.	3.8	25
44	Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. New Phytologist, 2021, 229, 3424-3439.	7.3	24
45	Analysis of polymorphism and transcription of the effector gene <i>Avr1b</i> in <i>Phytophthora sojae</i> isolates from China virulent to <i>Rps1b</i> isolates Plant Pathology, 2012, 13, 114-122.	4.2	23
46	How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. Current Opinion in Plant Biology, 2021, 62, 102027.	7.1	22
47	PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae. Fungal Biology, 2016, 120, 620-630.	2.5	20
48	Rapid detection of potato late blight using a loop-mediated isothermal amplification assay. Journal of Integrative Agriculture, 2020, 19, 1274-1282.	3.5	18
49	The <i>Phytophthora</i> effector Avh241 interacts with host NDR1â€like proteins to manipulate plant immunity. Journal of Integrative Plant Biology, 2021, 63, 1382-1396.	8.5	16
50	Editing of an effector gene promoter sequence impacts plant―Phytophthora interaction. Journal of Integrative Plant Biology, 2020, 62, 378-392.	8.5	15
51	<i>Phytophthora sojae </i> apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. Plant Physiology, 2021, 187, 321-335.	4.8	15
52	Specific interaction of an RNA-binding protein with the $3\hat{a}\in^2$ -UTR of its target mRNA is critical to oomycete sexual reproduction. PLoS Pathogens, 2021, 17, e1010001.	4.7	13
53	Rapid detection of Colletotrichum gloeosporioides using a loop-mediated isothermal amplification assay. Australasian Plant Pathology, 2017, 46, 493-498.	1.0	12
54	Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiology Reviews, $2021, 45, \ldots$	8.6	12

#	Article	lF	CITATIONS
55	Mammalian pro-apoptotic bax gene enhances tobacco resistance to pathogens. Plant Cell Reports, 2008, 27, 1559-1569.	5.6	11
56	Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. Phytopathology, 2021, 111, 96-107.	2.2	9
57	Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies. Biochemical Society Transactions, 2020, 48, 2399-2414.	3.4	9
58	Polymorphism in natural alleles of the avirulence gene Avr1c is associated with the host adaptation of Phytophthora sojae. Phytopathology Research, 2019, 1 , .	2.4	8
59	The bZIP transcription factor PsBZP32 is involved in cyst germination, oxidative stress response, and pathogenicity of Phytophthora sojae. Phytopathology Research, 2021, 3, .	2.4	8
60	Functional Analysis of PsAvr3c Effector Family From Phytophthora Provides Probes to Dissect SKRP Mediated Plant Susceptibility. Frontiers in Plant Science, 2018, 9, 1105.	3.6	6
61	An Improved Method for the Identification of Soybean Resistance to Phytophthora sojae Applied to Germplasm Resources from the Huanghuaihai and Dongbei Regions of China. Plant Disease, 2020, 104, 408-413.	1.4	5
62	Structures of plant resistosome reveal how NLR immune receptors are activated. ABIOTECH, 2020, 1 , $147-150$.	3.9	5
63	ATAC-seq reveals the landscape of open chromatin and cis-regulatory elements in the Phytophthora sojae genome. Molecular Plant-Microbe Interactions, 2022, , .	2.6	5
64	A new roadmap for the breeding of disease-resistant and high-yield crops. Stress Biology, 2021, 1, 1.	3.1	4
65	Green fluorescent protein (GFP) as a vital marker for studying the interaction of Phytophthora sojae and soybean. Science Bulletin, 2009, 54, 2822-2829.	9.0	2
66	Plant biotic interactions: From fundamental research toward sustainable agriculture. Journal of Integrative Plant Biology, 2021, 63, 275-276.	8.5	1