
## Yumeng Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7000200/publications.pdf Version: 2024-02-01



YUMENC SHI

| #  | Article                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial growth. Chemical Society<br>Reviews, 2022, 51, 803-811.                                                                                                                                                                   | 38.1 | 18        |
| 2  | A convergent paired electrolysis strategy enables the cross-coupling of methylarenes with imines.<br>Organic Chemistry Frontiers, 2022, 9, 2193-2197.                                                                                                                                              | 4.5  | 6         |
| 3  | Two-Dimensional Cs <sub>2</sub> AgBiBr <sub>6</sub> /WS <sub>2</sub> Heterostructure-Based<br>Photodetector with Boosted Detectivity via Interfacial Engineering. ACS Nano, 2022, 16, 3985-3993.                                                                                                   | 14.6 | 49        |
| 4  | Efficient red photoluminescence in holmium-doped Cs2NaInCl6 double perovskite. Cell Reports<br>Physical Science, 2022, 3, 100820.                                                                                                                                                                  | 5.6  | 31        |
| 5  | Chiral Ligand-Induced Structural Transformation of Low-Dimensional Hybrid Perovskite for<br>Circularly Polarized Photodetection. Chemistry of Materials, 2022, 34, 2955-2962.                                                                                                                      | 6.7  | 24        |
| 6  | Ultrafast growth of high-quality large-sized GaSe crystals by liquid metal promoter. Nano Research,<br>2022, 15, 4677-4681.                                                                                                                                                                        | 10.4 | 14        |
| 7  | Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano<br>Research, 2022, 15, 3647-3652.                                                                                                                                                                     | 10.4 | 5         |
| 8  | Co/Fe <sub>3</sub> O <sub>4</sub> nanoparticles embedded in N-doped hierarchical porous carbon<br>derived from zeolitic imidazolate frameworks as efficient oxygen reduction electrocatalysts for<br>zinc–air battery-based desalination. Journal of Materials Chemistry A, 2022, 10, 12213-12224. | 10.3 | 12        |
| 9  | A Novel 4,4'-Bipiperidine-Based Organic Salt for Efficient and Stable 2D-3D Perovskite Solar Cells. ACS<br>Applied Materials & Interfaces, 2022, 14, 22324-22331.                                                                                                                                  | 8.0  | 6         |
| 10 | Recent advances in kinetic optimizations of cathode materials for rechargeable magnesium batteries.<br>Coordination Chemistry Reviews, 2022, 466, 214597.                                                                                                                                          | 18.8 | 19        |
| 11 | Highly Reversible Moistureâ€Induced Bright Selfâ€Trapped Exciton Emissions in a Copperâ€Based<br>Organic–Inorganic Hybrid Metal Halide. Advanced Optical Materials, 2022, 10, .                                                                                                                    | 7.3  | 12        |
| 12 | Efficient Multicolor and White Photoluminescence in Erbium- and Holmium-Incorporated<br>Cs <sub>2</sub> NaInCl <sub>6</sub> :Sb <sup>3+</sup> Double Perovskites. Chemistry of Materials,<br>2022, 34, 6288-6295.                                                                                  | 6.7  | 49        |
| 13 | Low-defect-density WS2 by hydroxide vapor phase deposition. Nature Communications, 2022, 13, .                                                                                                                                                                                                     | 12.8 | 37        |
| 14 | Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chemical Engineering Journal, 2021, 405, 126676.                                                                                                                           | 12.7 | 63        |
| 15 | A Scalable H <sub>2</sub> O–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic<br>Perovskiteâ€Related Cesium Lead Bromides. Advanced Optical Materials, 2021, 9, 2001435.                                                                                                                  | 7.3  | 16        |
| 16 | Design of Black Phosphorous Derivatives with Excellent Stability and Ion-Kinetics for Alkali Metal-Ion<br>Battery. Energy Storage Materials, 2021, 35, 283-309.                                                                                                                                    | 18.0 | 8         |
| 17 | Mechanism investigation of high performance Na3V2(PO4)2O2F/reduced graphene oxide cathode for sodium-ion batteries. Journal of Power Sources, 2021, 482, 228906.                                                                                                                                   | 7.8  | 27        |
| 18 | Redox-catalysis flow electrode desalination in an organic solvent. Journal of Materials Chemistry A, 2021, 9, 22254-22261.                                                                                                                                                                         | 10.3 | 18        |

Yumeng Shi

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Highly efficient and stable ionic liquid-based gel electrolytes. Nanoscale, 2021, 13, 7140-7151.                                                                                                                                                   | 5.6  | 11        |
| 20 | Unveiling the Relationship between the Surface Chemistry of Nanoparticles and Ion Transport<br>Properties of the Resulting Composite Electrolytes. Journal of Physical Chemistry Letters, 2021, 12,<br>642-649.                                    | 4.6  | 4         |
| 21 | 2D Cs <sub>2</sub> AgBiBr <sub>6</sub> with Boosted Light–Matter Interaction for Highâ€Performance<br>Photodetectors. Advanced Optical Materials, 2021, 9, 2001930.                                                                                | 7.3  | 42        |
| 22 | A Scalable H <sub>2</sub> O–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic<br>Perovskiteâ€Related Cesium Lead Bromides (Advanced Optical Materials 3/2021). Advanced Optical<br>Materials, 2021, 9, 2170012.                           | 7.3  | 1         |
| 23 | In Situ Synthesis of Lead-Free Halide Perovskite Cs <sub>2</sub> AgBiBr <sub>6</sub> Supported on<br>Nitrogen-Doped Carbon for Efficient Hydrogen Evolution in Aqueous HBr Solution. ACS Applied<br>Materials & Interfaces, 2021, 13, 10037-10046. | 8.0  | 52        |
| 24 | MXeneâ€Based Materials for Electrochemical Sodiumâ€Ion Storage. Advanced Science, 2021, 8, e2003185.                                                                                                                                               | 11.2 | 88        |
| 25 | Unlocking Rapid and Robust Sodium Storage Performance of Zinc-Based Sulfide <i>via</i> Indium Incorporation. ACS Nano, 2021, 15, 8507-8516.                                                                                                        | 14.6 | 36        |
| 26 | Rational design of MXene-based films for energy storage: Progress, prospects. Materials Today, 2021,<br>46, 183-211.                                                                                                                               | 14.2 | 83        |
| 27 | Supramolecular engineering of charge transfer in wide bandgap organic semiconductors with enhanced visible-to-NIR photoresponse. Nature Communications, 2021, 12, 3667.                                                                            | 12.8 | 30        |
| 28 | Porosity Engineering of MXene Membrane towards Polysulfide Inhibition and Fast Lithium Ion<br>Transportation for Lithium–Sulfur Batteries. Small, 2021, 17, e2007442.                                                                              | 10.0 | 57        |
| 29 | One-Dimensional Organic–Metal Halide with Highly Efficient Warm White-Light Emission and Its<br>Moisture-Induced Structural Transformation. Chemistry of Materials, 2021, 33, 5668-5674.                                                           | 6.7  | 30        |
| 30 | Efficient White Photoluminescence from Self-Trapped Excitons in<br>Sb <sup>3+</sup> /Bi <sup>3+</sup> -Codoped Cs <sub>2</sub> NaInCl <sub>6</sub> Double Perovskites<br>with Tunable Dual-Emission. ACS Energy Letters, 2021, 6, 3343-3351.       | 17.4 | 126       |
| 31 | Harmonic generation in transition metal dichalcogenides and their heterostructures. Materials Today, 2021, 50, 570-586.                                                                                                                            | 14.2 | 14        |
| 32 | Highly Efficient Whiteâ€Light Emission Triggered by Sb <sup>3+</sup> Dopant in Indiumâ€Based Double<br>Perovskites. Advanced Photonics Research, 2021, 2, 2100143.                                                                                 | 3.6  | 15        |
| 33 | Zeroâ€Dimensional Organic–Inorganic Hybrid Copperâ€Based Halides with Highly Efficient Orange–Red<br>Emission. Small, 2021, 17, e2103831.                                                                                                          | 10.0 | 25        |
| 34 | Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl<br>Alcoholâ€Borax Layer. Angewandte Chemie - International Edition, 2021, 60, 25122-25127.                                                    | 13.8 | 32        |
| 35 | Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl<br>Alcoholâ€Borax Layer. Angewandte Chemie, 2021, 133, 25326-25331.                                                                           | 2.0  | 4         |
| 36 | Surface Charge Transfer Doping Enabled Large Hysteresis in van der Waals Heterostructures for<br>Artificial Synapse. , 2021, 3, 235-242.                                                                                                           |      | 14        |

| #  | Article                                                                                                                                                                                                     | IF        | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 37 | Suppressing Li Dendrite Puncture with a Hierarchical h-BN Protective Layer. ACS Applied Materials<br>& Interfaces, 2021, 13, 56109-56115.                                                                   | 8.0       | 9            |
| 38 | Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites. Advanced Science, 2020, 7,<br>1902126.                                                                                               | 11.2      | 94           |
| 39 | Synthesis of bismuth sulfide nanobelts for high performance broadband photodetectors. Journal of<br>Materials Chemistry C, 2020, 8, 2102-2108.                                                              | 5.5       | 43           |
| 40 | Enhanced sodium storage kinetics by volume regulation and surface engineering <i>via</i> rationally designed hierarchical porous FeP@C/rGO. Nanoscale, 2020, 12, 4341-4351.                                 | 5.6       | 80           |
| 41 | Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage. Nano<br>Energy, 2020, 69, 104389.                                                                             | 16.0      | 49           |
| 42 | High speed capacitive deionization system with flow-through electrodes. Desalination, 2020, 496, 114750.                                                                                                    | 8.2       | 19           |
| 43 | Quantum dot-carbonaceous nanohybrid composites: preparation and application in electrochemical energy storage. Journal of Materials Chemistry A, 2020, 8, 22488-22506.                                      | 10.3      | 26           |
| 44 | Enhanced ambipolar charge transport for efficient organic single crystal light-emitting transistors with a narrowed ambipolar regime. Journal of Materials Chemistry C, 2020, 8, 16333-16338.               | 5.5       | 9            |
| 45 | Nanoframes@CNT Beadsâ€onâ€aâ€String Structures: Toward an Advanced Highâ€Stable Sodiumâ€Ion Full<br>Battery. Small, 2020, 16, e2005095.                                                                     | 10.0      | 15           |
| 46 | Stepwise Intercalation-Conversion-Intercalation Sodiation Mechanism in CuInS <sub>2</sub><br>Prompting Sodium Storage Performance. ACS Energy Letters, 2020, 5, 3725-3732.                                  | 17.4      | 33           |
| 47 | Stimuliâ€Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives. Small, 2020, 16, e2001504.                                                                                     | 10.0      | 55           |
| 48 | 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. Journal of Materials<br>Chemistry A, 2020, 8, 19843-19854.                                                                  | 10.3      | 82           |
| 49 | Photocatalytic Hydrogen Evolution: Photocatalytic Hydrogen Evolution under Ambient Conditions<br>on Polymeric Carbon Nitride/Donorâ€i€â€Acceptor Organic Molecule Heterostructures (Adv. Funct.) Tj ETQq1 1 | 0.7849314 | rg&T /Overic |
| 50 | Facile and Reversible Carrier-Type Manipulation of Layered MoTe <sub>2</sub> Toward Long-Term<br>Stable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 42918-42924.                             | 8.0       | 4            |
| 51 | Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon<br>Nitride/Donorâ€i€â€Acceptor Organic Molecule Heterostructures. Advanced Functional Materials, 2020,<br>30, 2005106.       | 14.9      | 46           |
| 52 | Sb nanoparticle decorated rGO as a new anode material in aqueous chloride ion batteries. Nanoscale,<br>2020, 12, 12268-12274.                                                                               | 5.6       | 20           |
| 53 | Zinc–Air Battery-Based Desalination Device. ACS Applied Materials & Interfaces, 2020, 12, 25728-25735.                                                                                                      | 8.0       | 29           |
| 54 | Photocathode-assisted redox flow desalination. Green Chemistry, 2020, 22, 4133-4139.                                                                                                                        | 9.0       | 29           |

| #  | Article                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Lithiophilic Silver Coating on Lithium Metal Surface for Inhibiting Lithium Dendrites. Frontiers in<br>Chemistry, 2020, 8, 109. | 3.6 | 16        |

## 56 Nanocarbon Catalysts: Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 T

| 57 | Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity<br>tuning and efficient white light emission. Journal of Materials Chemistry C, 2020, 8, 4895-4901.                               | 5.5  | 49 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 58 | Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes. Nano-Micro Letters, 2020, 12, 60.                                                                                                                        | 27.0 | 60 |
| 59 | Photoluminescence Mechanisms of Allâ€Inorganic Cesium Lead Bromide Perovskites Revealed by Single<br>Particle Spectroscopy. ChemNanoMat, 2020, 6, 327-335.                                                                           | 2.8  | 16 |
| 60 | Grain Boundary Induced Ultralow Threshold Random Laser in a Single GaTe Flake. ACS Applied<br>Materials & Interfaces, 2020, 12, 23323-23329.                                                                                         | 8.0  | 10 |
| 61 | Morphological and Electronic Dual Regulation of Cobalt–Nickel Bimetal Phosphide Heterostructures<br>Inducing High Water-Splitting Performance. Journal of Physical Chemistry Letters, 2020, 11, 3911-3919.                           | 4.6  | 33 |
| 62 | Defect-induced nucleation and epitaxial growth of a MOF-derived hierarchical Mo <sub>2</sub> C@Co<br>architecture for an efficient hydrogen evolution reaction. RSC Advances, 2020, 10, 13838-13847.                                 | 3.6  | 7  |
| 63 | Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for<br>high-performance symmetric Li-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 11529-11537.                                   | 10.3 | 30 |
| 64 | Controllable nonlinear optical properties of different-sized iron phosphorus trichalcogenide (FePS3)<br>nanosheets. Nanophotonics, 2020, 9, 4555-4564.                                                                               | 6.0  | 9  |
| 65 | Postâ€Treatment of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> /PbI <sub>2</sub> Composite Films<br>with Methylamine to Realize Highâ€Performance Photoconductor Devices. Chemistry - an Asian Journal,<br>2019, 14, 2861-2868. | 3.3  | 7  |
| 66 | Defective NiFe <sub>2</sub> O <sub>4</sub> Nanoparticles for Efficient Urea Electroâ€oxidation.<br>Chemistry - an Asian Journal, 2019, 14, 2796-2801.                                                                                | 3.3  | 14 |
| 67 | An Aqueous Rechargeable Fluoride Ion Battery with Dual Fluoride Electrodes. Journal of the Electrochemical Society, 2019, 166, A2419-A2424.                                                                                          | 2.9  | 19 |
| 68 | Template growth of perovskites on yarn fibers induced by capillarity for flexible photoelectric applications. Journal of Materials Chemistry C, 2019, 7, 9496-9503.                                                                  | 5.5  | 12 |
| 69 | Self-Powered Perovskite/CdS Heterostructure Photodetectors. ACS Applied Materials &<br>Interfaces, 2019, 11, 40204-40213.                                                                                                            | 8.0  | 65 |
| 70 | Dendrite-Free Li Metal Plating/Stripping Onto Three-Dimensional Vertical-Graphene@Carbon-Cloth<br>Host. Frontiers in Chemistry, 2019, 7, 714.                                                                                        | 3.6  | 24 |
| 71 | High-Concentration Niobium-Substituted WS2 Basal Domains with Reconfigured Electronic Band<br>Structure for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11,<br>34862-34868.                               | 8.0  | 21 |
| 72 | Influence of the Organic Chain on the Optical Properties of Two-Dimensional Organic–Inorganic<br>Hybrid Lead Iodide Perovskites. ACS Applied Electronic Materials, 2019, 1, 2253-2259.                                               | 4.3  | 13 |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Boosting Sodium Storage of Fe1â^'xS/MoS2 Composite via Heterointerface Engineering. Nano-Micro<br>Letters, 2019, 11, 80.                                                                                                 | 27.0 | 77        |
| 74 | Effects of precursor pre-treatment on the vapor deposition of WS <sub>2</sub> monolayers.<br>Nanoscale Advances, 2019, 1, 953-960.                                                                                       | 4.6  | 17        |
| 75 | Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials.<br>Journal of Materials Chemistry A, 2019, 7, 540-548.                                                               | 10.3 | 26        |
| 76 | The photoluminescence mechanism of CsPb <sub>2</sub> Br <sub>5</sub> microplates revealed by spatially resolved single particle spectroscopy. Nanoscale, 2019, 11, 3186-3192.                                            | 5.6  | 43        |
| 77 | Location-selective growth of two-dimensional metallic/semiconducting transition metal dichalcogenide heterostructures. Nanoscale, 2019, 11, 4183-4189.                                                                   | 5.6  | 16        |
| 78 | Polypyrrole coated niobium disulfide nanowires as high performance electrocatalysts for hydrogen evolution reaction. Nanotechnology, 2019, 30, 405601.                                                                   | 2.6  | 7         |
| 79 | Toward the Growth of High Mobility 2D Transition Metal Dichalcogenide Semiconductors. Advanced Materials Interfaces, 2019, 6, 1900220.                                                                                   | 3.7  | 42        |
| 80 | In Situ Transmission Electron Microscopy for Energy Materials and Devices. Advanced Materials, 2019,<br>31, e1900608.                                                                                                    | 21.0 | 95        |
| 81 | Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Materials, 2019, 23, 17-24.                                                                                     | 18.0 | 83        |
| 82 | Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Chemical<br>Communications, 2019, 55, 6555-6558.                                                                                 | 4.1  | 53        |
| 83 | Continuous desalination with a metal-free redox-mediator. Journal of Materials Chemistry A, 2019, 7, 13941-13947.                                                                                                        | 10.3 | 38        |
| 84 | Rhenium disulfide nanosheets/carbon composite as novel anodes for high-rate and long lifespan sodium-ion batteries. Nano Energy, 2019, 61, 626-636.                                                                      | 16.0 | 46        |
| 85 | Base-enhanced electrochemical water oxidation by a nickel complex in neutral aqueous solution.<br>Chemical Communications, 2019, 55, 6122-6125.                                                                          | 4.1  | 36        |
| 86 | 3D self-branched zinc-cobalt Oxide@N-doped carbon hollow nanowall arrays for high-performance asymmetric supercapacitors and oxygen electrocatalysis. Energy Storage Materials, 2019, 23, 653-663.                       | 18.0 | 104       |
| 87 | An all manganese-based oxide nanocrystal cathode and anode for high performance lithium-ion full<br>cells. Nanoscale Advances, 2019, 1, 1714-1720.                                                                       | 4.6  | 7         |
| 88 | High Oxidation Resistance of CVD Graphene-Reinforced Copper Matrix Composites. Nanomaterials, 2019, 9, 498.                                                                                                              | 4.1  | 16        |
| 89 | High-Performance Photoresistors Based on Perovskite Thin Film with a High PbI2 Doping Level.<br>Nanomaterials, 2019, 9, 505.                                                                                             | 4.1  | 12        |
| 90 | Tunable Pseudocapacitive Behavior in Metal–Organic Framework-Derived TiO <sub>2</sub> @Porous<br>Carbon Enabling High-Performance Membrane Capacitive Deionization. ACS Applied Energy Materials,<br>2019, 2, 1812-1822. | 5.1  | 60        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Electrochemical Performance of Sb <sub>4</sub> O <sub>5</sub> Cl <sub>2</sub> as a New Anode<br>Material in Aqueous Chloride-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 9144-9148.                                                     | 8.0  | 44        |
| 92  | Thermal-Assisted Vertical Electron Injections in Few-Layer Pyramidal-Structured MoS <sub>2</sub><br>Crystals. Journal of Physical Chemistry Letters, 2019, 10, 1292-1299.                                                                              | 4.6  | 5         |
| 93  | Promoting polysulfide conversion by catalytic ternary<br>Fe <sub>3</sub> O <sub>4</sub> /carbon/graphene composites with ordered microchannels for<br>ultrahigh-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 25078-25087. | 10.3 | 68        |
| 94  | Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li <sub>2</sub> S<br>Redox Conversion in Li–S Batteries. Small, 2019, 15, e1906132.                                                                                   | 10.0 | 62        |
| 95  | An organic flow desalination battery. Energy Storage Materials, 2019, 20, 203-207.                                                                                                                                                                     | 18.0 | 47        |
| 96  | Boosting the Electrocatalytic Water Oxidation Performance of CoFe <sub>2</sub> O <sub>4</sub><br>Nanoparticles by Surface Defect Engineering. ACS Applied Materials & Interfaces, 2019, 11, 3978-3983.                                                 | 8.0  | 76        |
| 97  | Significant photoluminescence enhancement in WS <sub>2</sub> monolayers through<br>Na <sub>2</sub> S treatment. Nanoscale, 2018, 10, 6105-6112.                                                                                                        | 5.6  | 35        |
| 98  | Efficient Sodium Storage in Rolledâ€Up Amorphous Si Nanomembranes. Advanced Materials, 2018, 30,<br>e1706637.                                                                                                                                          | 21.0 | 87        |
| 99  | MoS <sub>x</sub> -coated NbS <sub>2</sub> nanoflakes grown on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 3444-3450.                                                                           | 5.6  | 24        |
| 100 | Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Materials, 2018, 15, 98-107.                                                                       | 18.0 | 102       |
| 101 | Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism,<br>Controllability, and Scalability. Chemical Reviews, 2018, 118, 6134-6150.                                                                           | 47.7 | 285       |
| 102 | Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides flat-pack assembly. Carbon, 2018, 127, 602-610.                                                                                                                 | 10.3 | 15        |
| 103 | Direct Observation of Perovskite Photodetector Performance Enhancement by Atomically Thin<br>Interface Engineering. ACS Applied Materials & Interfaces, 2018, 10, 36493-36504.                                                                         | 8.0  | 25        |
| 104 | Recent advances of low-dimensional materials in lasing applications. FlatChem, 2018, 10, 22-38.                                                                                                                                                        | 5.6  | 14        |
| 105 | The electrochemical behaviors of NaF dual battery based on the hybrid electrodes of nano-bismuth@CNTs. Materials Letters, 2018, 233, 332-335.                                                                                                          | 2.6  | 8         |
| 106 | 3D carbon foam-supported WS <sub>2</sub> nanosheets for cable-shaped flexible sodium ion batteries.<br>Journal of Materials Chemistry A, 2018, 6, 10813-10824.                                                                                         | 10.3 | 112       |
| 107 | Tailoring NiO Nanostructured Arrays by Sulfate Anions for Sodiumâ€lon Batteries. Small, 2018, 14,<br>e1800898.                                                                                                                                         | 10.0 | 39        |
| 108 | Two-step fabrication of single-layer rectangular SnSe flakes. 2D Materials, 2017, 4, 021026.                                                                                                                                                           | 4.4  | 57        |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | PAH contamination in road dust from a moderate city in North China: The significant role of traffic emission. Human and Ecological Risk Assessment (HERA), 2017, 23, 1072-1085.                               | 3.4  | 16        |
| 110 | Fe 2 O 3 nanothorns sensitized two-dimensional TiO 2 nanosheets for highly efficient solar energy conversion. FlatChem, 2017, 3, 1-7.                                                                         | 5.6  | 14        |
| 111 | InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Advances, 2017, 7, 26665-26672.                                                                                       | 3.6  | 32        |
| 112 | Graphene-Au nanoparticle based vertical heterostructures: A novel route towards high- ZT<br>Thermoelectric devices. Nano Energy, 2017, 38, 385-391.                                                           | 16.0 | 26        |
| 113 | Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant<br>Tunneling Phenomenon. ACS Nano, 2017, 11, 11015-11023.                                                     | 14.6 | 45        |
| 114 | A review on the research progress of tailoring photoluminescence of monolayer transition metal dichalcogenides. FlatChem, 2017, 4, 48-53.                                                                     | 5.6  | 18        |
| 115 | High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions.<br>Nanoscale Horizons, 2017, 2, 37-42.                                                                         | 8.0  | 21        |
| 116 | Promoting the yield and crystallinity of synthetic WS2 via precursor pretreatment. , 2017, , .                                                                                                                |      | 0         |
| 117 | Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters, 2016, 109, .                                                                                                  | 3.3  | 64        |
| 118 | Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide. Nano Letters, 2016, 16,<br>3682-3688.                                                                                              | 9.1  | 55        |
| 119 | Atomic-Monolayer MoS <sub>2</sub> Band-to-Band Tunneling Field-Effect Transistor. Small, 2016, 12, 5676-5683.                                                                                                 | 10.0 | 41        |
| 120 | Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities. Nano Letters, 2016, 16,<br>5605-5611.                                                                                                | 9.1  | 44        |
| 121 | Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal<br>Dichalcogenide/Ferromagnet Bilayers. Nano Letters, 2016, 16, 7514-7520.                                            | 9.1  | 247       |
| 122 | Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition<br>Growth on Lithographically Patterned Area. ACS Nano, 2016, 10, 10516-10523.                              | 14.6 | 52        |
| 123 | Dual-mode operation of 2D material-base hot electron transistors. Scientific Reports, 2016, 6, 32503.                                                                                                         | 3.3  | 12        |
| 124 | Heterostructured WS <sub>2</sub> /CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub><br>Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity. Advanced Materials,<br>2016, 28, 3683-3689. | 21.0 | 396       |
| 125 | Heterostructures based on two-dimensional layered materials and their potential applications.<br>Materials Today, 2016, 19, 322-335.                                                                          | 14.2 | 469       |
| 126 | Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe <sub>2</sub> by<br>Hydrohalic Acid Treatment. ACS Nano, 2016, 10, 1454-1461.                                                          | 14.6 | 179       |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Photoluminescence Enhancement in Defect Monolayer MoSe2 by Hydrohalic Acid Treatment. , 2016, , .                                                                                                                               |      | 0         |
| 128 | Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin, 2015, 40, 566-576.                                                                                                                   | 3.5  | 43        |
| 129 | MoS2 Surface Structure Tailoring via Carbonaceous Promoter. Scientific Reports, 2015, 5, 10378.                                                                                                                                 | 3.3  | 28        |
| 130 | Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic<br>Nanocavities. ACS Nano, 2015, 9, 825-830.                                                                                         | 14.6 | 101       |
| 131 | Epitaxial growth of a monolayer WSe <sub>2</sub> -MoS <sub>2</sub> lateral p-n junction with an atomically sharp interface. Science, 2015, 349, 524-528.                                                                        | 12.6 | 1,009     |
| 132 | Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Scientific Reports, 2015, 5, 9164.                                                       | 3.3  | 119       |
| 133 | Emerging energy applications of two-dimensionalÂlayered transition metal dichalcogenides. Nano<br>Energy, 2015, 18, 293-305.                                                                                                    | 16.0 | 236       |
| 134 | A novel single-layered MoS <sub>2</sub> nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale, 2015, 7, 2245-2249.                                                                              | 5.6  | 100       |
| 135 | Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015, 44, 2744-2756.                                                    | 38.1 | 709       |
| 136 | Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology, 2014, 25, 094010.                                                                                   | 2.6  | 100       |
| 137 | Hybrid CuO/SnO2 nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials. Applied Physics Letters, 2014, 105, .                                                            | 3.3  | 53        |
| 138 | Real-time, sensitive electrical detection ofCryptosporidium parvumoocysts based on chemical vapor deposition-grown graphene. Applied Physics Letters, 2014, 104, 063705.                                                        | 3.3  | 3         |
| 139 | Excitons in a mirror: Formation of "optical bilayers―using MoS2 monolayers on gold substrates.<br>Applied Physics Letters, 2014, 104, .                                                                                         | 3.3  | 31        |
| 140 | Pre-lithiation of onion-like carbon/MoS <sub>2</sub> nano-urchin anodes for high-performance<br>rechargeable lithium ion batteries. Nanoscale, 2014, 6, 8884-8890.                                                              | 5.6  | 93        |
| 141 | Dual Wavelength Electroluminescence from CdSe/CdS Tetrapods. ACS Nano, 2014, 8, 2873-2879.                                                                                                                                      | 14.6 | 56        |
| 142 | CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano<br>Energy, 2014, 3, 46-54.                                                                                                     | 16.0 | 185       |
| 143 | Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the<br>electrochemical performance of SnO <sub>2</sub> (GeO <sub>2</sub> ) <sub>0.13</sub> /G anodes.<br>Nanoscale, 2014, 6, 15020-15028. | 5.6  | 26        |
| 144 | 3D graphene supported MoO <sub>2</sub> for high performance binder-free lithium ion battery.<br>Nanoscale, 2014, 6, 9839-9845.                                                                                                  | 5.6  | 82        |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Phase Transformation Induced Capacitance Activation for 3D Grapheneâ€CoO Nanorod Pseudocapacitor.<br>Advanced Energy Materials, 2014, 4, 1301788.                                                                                                        | 19.5 | 83        |
| 146 | Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells. Nanoscale, 2013, 5, 8934.                                                                                                                                       | 5.6  | 61        |
| 147 | Large scale synthesized sulphonated reduced graphene oxide: a high performance material for electrochemical capacitors. RSC Advances, 2013, 3, 14954.                                                                                                    | 3.6  | 16        |
| 148 | Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013, 13, 1852-1857.                                                                                                                               | 9.1  | 612       |
| 149 | Preparation of MoS <sub>2</sub> oated Threeâ€Đimensional Graphene Networks for Highâ€Performance<br>Anode Material in Lithiumâ€ion Batteries. Small, 2013, 9, 3433-3438.                                                                                 | 10.0 | 542       |
| 150 | Large-Area 2-D Electronics: Materials, Technology, and Devices. Proceedings of the IEEE, 2013, 101, 1638-1652.                                                                                                                                           | 21.3 | 46        |
| 151 | Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 3, 1839.                                                                                                                                           | 3.3  | 380       |
| 152 | Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 2013, 13, 2615-2622.                                                                                                                                                       | 9.1  | 1,766     |
| 153 | Chapter 3. Photoelectrical Responses of Carbon Nanotube–Polymer Composites. RSC Nanoscience and Nanotechnology, 2013, , 51-71.                                                                                                                           | 0.2  | 0         |
| 154 | Self-assembly of hierarchical MoSx/CNT nanocomposites (2 <x<3): 2013,="" 2169.<="" 3,="" anode="" batteries.="" for="" high="" ion="" lithium="" materials="" performance="" reports,="" scientific="" td="" towards=""><td>3.3</td><td>290</td></x<3):> | 3.3  | 290       |
| 155 | Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. RSC<br>Advances, 2012, 2, 111-115.                                                                                                                         | 3.6  | 72        |
| 156 | Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene<br>Devices. ACS Nano, 2012, 6, 8583-8590.                                                                                                              | 14.6 | 472       |
| 157 | Integrated Circuits Based on Bilayer MoS <sub>2</sub> Transistors. Nano Letters, 2012, 12, 4674-4680.                                                                                                                                                    | 9.1  | 1,526     |
| 158 | Single-Layer MoS <sub>2</sub> Phototransistors. ACS Nano, 2012, 6, 74-80.                                                                                                                                                                                | 14.6 | 3,103     |
| 159 | Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano<br>Letters, 2012, 12, 161-166.                                                                                                                           | 9.1  | 1,057     |
| 160 | van der Waals Epitaxy of MoS <sub>2</sub> Layers Using Graphene As Growth Templates. Nano Letters,<br>2012, 12, 2784-2791.                                                                                                                               | 9.1  | 888       |
| 161 | Growth of Large-Area and Highly Crystalline MoS <sub>2</sub> Thin Layers on Insulating Substrates.<br>Nano Letters, 2012, 12, 1538-1544.                                                                                                                 | 9.1  | 1,749     |
| 162 | Chemically modified graphene: flame retardant or fuel for combustion?. Journal of Materials<br>Chemistry, 2011, 21, 3277-3279.                                                                                                                           | 6.7  | 70        |

Yumeng Shi

| #   | Article                                                                                                                                                                                                                                                                                                | IF         | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 163 | Graphene Oxide as a Carbon Source for Controlled Growth of Carbon Nanowires. Small, 2011, 7, 1199-1202.                                                                                                                                                                                                | 10.0       | 75        |
| 164 | Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 2011, 7, 3163-3168.                                                                                                                                                                                                  | 10.0       | 980       |
| 165 | Electrical Detection of DNA Hybridization with Singleâ€Base Specificity Using Transistors Based on<br>CVDâ€Grown Graphene Sheets. Advanced Materials, 2010, 22, 1649-1653.                                                                                                                             | 21.0       | 516       |
| 166 | Aromatic Molecules Doping in Single-Layer Graphene Probed by Raman Spectroscopy and Electrostatic<br>Force Microscopy. Japanese Journal of Applied Physics, 2010, 49, 01AH04.                                                                                                                          | 1.5        | 10        |
| 167 | Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Letters, 2010, 10, 4134-4139.                                                                                                                                                                              | 9.1        | 1,058     |
| 168 | Work Function Engineering of Graphene Electrode <i>via</i> Chemical Doping. ACS Nano, 2010, 4, 2689-2694.                                                                                                                                                                                              | 14.6       | 501       |
| 169 | Nanoelectronic biosensors based on CVD grown graphene. Nanoscale, 2010, 2, 1485.                                                                                                                                                                                                                       | 5.6        | 408       |
| 170 | Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21, 285205.                                                                                                                                                                                                 | 2.6        | 321       |
| 171 | Effective doping of single-layer graphene from underlying <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mrow><mml:msub><mml:mrow><mml:mtext>SiO</mml:mtext></mml:mrow><mml:mn><br/>Physical Review B. 2009. 79</mml:mn></mml:msub></mml:mrow></mml:math<br> | •2<⁄¦mml:r | nn>       |
| 172 | Doping Single‣ayer Graphene with Aromatic Molecules. Small, 2009, 5, 1422-1426.                                                                                                                                                                                                                        | 10.0       | 537       |
| 173 | Photoelectrical Response in Single‣ayer Graphene Transistors. Small, 2009, 5, 2005-2011.                                                                                                                                                                                                               | 10.0       | 141       |
| 174 | Symmetry Breaking of Graphene Monolayers by Molecular Decoration. Physical Review Letters, 2009, 102, 135501.                                                                                                                                                                                          | 7.8        | 224       |
| 175 | White organic light emitting devices with thin<br>4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) layer. Displays,<br>2008, 29, 419-423.                                                                                                                        | 3.7        | 6         |
| 176 | Emission mechanism in the terbium complex doped PVK system. Frontiers of Optoelectronics in China, 2008, 1, 130-133.                                                                                                                                                                                   | 0.2        | 1         |
| 177 | Work function engineering of electrodes via electropolymerization of ethylenedioxythiophenes and its derivatives. Organic Electronics, 2008, 9, 859-863.                                                                                                                                               | 2.6        | 30        |
| 178 | Multilayer cathode for organic light-emitting devices. Displays, 2008, 29, 323-326.                                                                                                                                                                                                                    | 3.7        | 0         |
| 179 | Label-Free Electronic Detection of DNA Using Simple Double-Walled Carbon Nanotube Resistors.<br>Journal of Physical Chemistry C, 2008, 112, 9891-9895.                                                                                                                                                 | 3.1        | 37        |
| 180 | Differentiation of Gas Molecules Using Flexible and All-Carbon Nanotube Devices. Journal of Physical<br>Chemistry C, 2008, 112, 650-653.                                                                                                                                                               | 3.1        | 85        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Photoresponse in Self-Assembled Films of Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 13004-13009.                                                                            | 3.1 | 24        |
| 182 | Photoconductivity from Carbon Nanotube Transistors Activated by Photosensitive Polymers. Journal of Physical Chemistry C, 2008, 112, 18201-18206.                                              | 3.1 | 17        |
| 183 | Interaction between fluorene-based polymers and carbon nanotubes/carbon nanotube field-effect transistors. , 2008, , .                                                                         |     | 0         |
| 184 | Effects of substrates on photocurrents from photosensitive polymer coated carbon nanotube networks. Applied Physics Letters, 2008, 92, .                                                       | 3.3 | 9         |
| 185 | N-type behavior of ferroelectric-gate carbon nanotube network transistor. Applied Physics Letters, 2008, 93, 082103.                                                                           | 3.3 | 11        |
| 186 | Heme-Enabled Electrical Detection of Carbon Monoxide at Room Temperature Using Networked<br>Carbon Nanotube Field-Effect Transistors. Chemistry of Materials, 2007, 19, 6059-6061.             | 6.7 | 16        |
| 187 | Poly(3,3‴-didodecylquarterthiophene) field effect transistors with single-walled carbon nanotube based source and drain electrodes. Applied Physics Letters, 2007, 91, 223512.                 | 3.3 | 26        |
| 188 | Quantum well organic light emitting diodes with ultra thin Rubrene layer. Displays, 2007, 28, 97-100.                                                                                          | 3.7 | 7         |
| 189 | Electroluminescence characteristics of a new kind of rare-earth complex: TbY(o-MOBA)6(phen)22H2O.<br>Journal of Luminescence, 2007, 122-123, 272-274.                                          | 3.1 | 7         |
| 190 | Electroluminescent devices based on rare-earth complex TbY(p-MBA)6(phen)2. Journal of Luminescence, 2007, 122-123, 671-673.                                                                    | 3.1 | 12        |
| 191 | Organic light-emitting diodes with improved hole–electron balance and tunable light emission with<br>aromatic diamine/bathocuproine multiple hole-trapping-layer. Displays, 2006, 27, 166-169. | 3.7 | 14        |
| 192 | Synthesis of Transition Metal Dichalcogenides. , 0, , 344-358.                                                                                                                                 |     | 0         |
| 193 | Performance Limits and Potential of Multilayer Graphene–Tungsten Diselenide Heterostructures.<br>Advanced Electronic Materials, 0, , 2100355.                                                  | 5.1 | 2         |