
Julin N Maloof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7000136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 2008, 9, R130.	9.6	677
2	Rhythmic growth explained by coincidence between internal and external cues. Nature, 2007, 448, 358-361.	27.8	599
3	The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, 2002, 30, 190-193.	21.4	425
4	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391
5	Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2655-62.	7.1	325
6	Natural variation in light sensitivity of Arabidopsis. Nature Genetics, 2001, 29, 441-446.	21.4	261
7	Three Redundant Brassinosteroid Early Response Genes Encode Putative bHLH Transcription Factors Required for Normal Growth. Genetics, 2002, 162, 1445-1456.	2.9	259
8	A Modern Ampelography: A Genetic Basis for Leaf Shape and Venation Patterning in Grape. Plant Physiology, 2014, 164, 259-272.	4.8	233
9	GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. ELife, 2015, 4, .	6.0	212
10	A Quantitative Genetic Basis for Leaf Morphology in a Set of Precisely Defined Tomato Introgression Lines. Plant Cell, 2013, 25, 2465-2481.	6.6	209
11	The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nature Genetics, 2006, 38, 711-715.	21.4	191
12	Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2616-21.	7.1	178
13	Domestication selected for deceleration of the circadian clock in cultivated tomato. Nature Genetics, 2016, 48, 89-93.	21.4	165
14	An Internal Motor Kinesin Is Associated with the Golgi Apparatus and Plays a Role in Trichome Morphogenesis in Arabidopsis. Molecular Biology of the Cell, 2005, 16, 811-823.	2.1	147
15	A High-Throughput Method for Illumina RNA-Seq Library Preparation. Frontiers in Plant Science, 2012, 3, 202.	3.6	145
16	BBX32, an Arabidopsis B-Box Protein, Functions in Light Signaling by Suppressing HY5-Regulated Gene Expression and Interacting with STH2/BBX21 Â. Plant Physiology, 2011, 156, 2109-2123.	4.8	140
17	Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 471-485.	6.6	139
18	Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis Â. Plant Physiology, 2011, 156, 357-372.	4.8	136

#	Article	IF	CITATIONS
19	Circadian oscillation of gibberellin signaling in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9292-9297.	7.1	131
20	Structured Light-Based 3D Reconstruction System for Plants. Sensors, 2015, 15, 18587-18612.	3.8	129
21	Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth. Plant Cell, 2016, 28, 2889-2904.	6.6	128
22	Quantitative Trait Loci Controlling Light and Hormone Response in Two Accessions of <i>Arabidopsis thaliana</i> . Genetics, 2002, 160, 683-696.	2.9	127
23	Network Analysis Identifies ELF3 as a QTL for the Shade Avoidance Response in Arabidopsis. PLoS Genetics, 2010, 6, e1001100.	3.5	120
24	Cis-regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana. Genetics, 2009, 183, 723-732.	2.9	109
25	Diurnal regulation of plant growth*. Plant, Cell and Environment, 2006, 29, 396-408.	5.7	107
26	Genomic Analysis of QTLs and Genes Altering Natural Variation in Stochastic Noise. PLoS Genetics, 2011, 7, e1002295.	3.5	107
27	COP1-Mediated Degradation of BBX22/LZF1 Optimizes Seedling Development in Arabidopsis Â. Plant Physiology, 2011, 156, 228-239.	4.8	102
28	Amino acid polymorphisms in <i>Arabidopsis</i> phytochrome B cause differential responses to light. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3157-3162.	7.1	97
29	Molecular control of crop shade avoidance. Current Opinion in Plant Biology, 2016, 30, 151-158.	7.1	96
30	A Genome-Wide Association Study Identifies Variants Underlying the Arabidopsis thaliana Shade Avoidance Response. PLoS Genetics, 2012, 8, e1002589.	3.5	95
31	PIF Genes Mediate the Effect of Sucrose on Seedling Growth Dynamics. PLoS ONE, 2011, 6, e19894.	2.5	92
32	QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines. PLoS ONE, 2009, 4, e4318.	2.5	92
33	Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1729-1734.	7.1	88
34	eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato. Plant Physiology, 2016, 172, 328-340.	4.8	87
35	The Developmental Trajectory of Leaflet Morphology in Wild Tomato Species Â. Plant Physiology, 2012, 158, 1230-1240.	4.8	85
36	Light-Response Quantitative Trait Loci Identified with Composite Interval and eXtreme Array Mapping in Arabidopsis thalianaSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY394847 and AY466496 Genetics, 2004, 167, 907-917.	2.9	83

#	Article	IF	CITATIONS
37	The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics. PLoS Genetics, 2016, 12, e1005789.	3.5	83
38	Shade Avoidance Components and Pathways in Adult Plants Revealed by Phenotypic Profiling. PLoS Genetics, 2015, 11, e1004953.	3.5	76
39	Resolving Distinct Genetic Regulators of Tomato Leaf Shape within a Heteroblastic and Ontogenetic Context. Plant Cell, 2014, 26, 3616-3629.	6.6	75
40	Rapid creation of <i>Arabidopsis</i> doubled haploid lines for quantitative trait locus mapping. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4227-4232.	7.1	68
41	ldentification of Novel Loci Regulating Interspecific Variation in Root Morphology and Cellular Development in Tomato Â. Plant Physiology, 2013, 162, 755-768.	4.8	68
42	<i>YUCCA</i> auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ, 2016, 4, e2574.	2.0	68
43	Plant high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length and rosette area. Computers and Electronics in Agriculture, 2016, 127, 376-394.	7.7	63
44	Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. Frontiers in Plant Science, 2017, 8, 900.	3.6	61
45	Native Environment Modulates Leaf Size and Response to Simulated Foliar Shade across Wild Tomato Species. PLoS ONE, 2012, 7, e29570.	2.5	54
46	QTL for plant growth and morphology. Current Opinion in Plant Biology, 2003, 6, 85-90.	7.1	53
47	Multi-level Modulation of Light Signaling by GIGANTEA Regulates Both the Output and Pace of the Circadian Clock. Developmental Cell, 2019, 49, 840-851.e8.	7.0	53
48	Leaf]: An ImageJ Plugin for Semi-automated Leaf Shape Measurement. Journal of Visualized Experiments, 2013, , .	0.3	52
49	Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theoretical and Applied Genetics, 2013, 126, 601-609.	3.6	51
50	Quantifying time-series of leaf morphology using 2D and 3D photogrammetry methods for high-throughput plant phenotyping. Computers and Electronics in Agriculture, 2017, 135, 222-232.	7.7	51
51	Light-induced indeterminacy alters shade avoiding tomato leaf morphology. Plant Physiology, 2015, 169, pp.01229.2015.	4.8	49
52	Reassess the <i>t</i> Test: Interact with All Your Data via ANOVA. Plant Cell, 2015, 27, 2088-2094.	6.6	48
53	Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC Plant Biology, 2009, 9, 85.	3.6	44
54	Genes underlying quantitative variation in ecologically important traits: <i>PIF4</i> (<i>PHYTOCHROME) Tj ETQq0</i>	0 0 rgBT 3.9	/Overlock 10 43

#	Article	IF	CITATIONS
55	ANTAGONISTIC MULTILEVEL SELECTION ON SIZE AND ARCHITECTURE IN VARIABLE DENSITY SETTINGS. Evolution; International Journal of Organic Evolution, 2007, 61, 58-67.	2.3	41
56	Dynamic Transcriptomic Profiles between Tomato and a Wild Relative Reflect Distinct Developmental Architectures Â. Plant Physiology, 2013, 162, 537-552.	4.8	41
57	Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape. New Phytologist, 2015, 208, 257-268.	7.3	41
58	Leaf shape is a predictor of fruit quality and cultivar performance in tomato. New Phytologist, 2020, 226, 851-865.	7.3	38
59	Genomic approaches to analyzing natural variation in Arabidopsis thaliana. Current Opinion in Genetics and Development, 2003, 13, 576-582.	3.3	37
60	A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. G3: Genes, Genomes, Genetics, 2016, 6, 3169-3184.	1.8	36
61	Circadian rhythms vary over the growing season and correlate with fitness components. Molecular Ecology, 2017, 26, 5528-5540.	3.9	35
62	Natural variation in phytochrome signaling. Seminars in Cell and Developmental Biology, 2000, 11, 523-530.	5.0	32
63	Polymorphism Identification and Improved Genome Annotation of <i>Brassica rapa</i> Through Deep RNA Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 2065-2078.	1.8	29
64	The role of a class <scp>III</scp> gibberellin 2â€oxidase in tomato internode elongation. Plant Journal, 2019, 97, 603-615.	5.7	28
65	Floral Genetic Architecture: An Examination of QTL Architecture Underlying Floral (Co)Variation Across Environments. Genetics, 2010, 186, 1451-1465.	2.9	27
66	Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth. Plant Physiology, 2020, 183, 1268-1280.	4.8	27
67	Integrated QTL and eQTL Mapping Provides Insights and Candidate Genes for Fatty Acid Composition, Flowering Time, and Growth Traits in a F2 Population of a Novel Synthetic Allopolyploid Brassica napus. Frontiers in Plant Science, 2018, 9, 1632.	3.6	25
68	Tissue-Specific Transcriptome Analysis Reveals Candidate Genes for Terpenoid and Phenylpropanoid Metabolism in the Medicinal Plant <i>Ferula assafoetida</i> . G3: Genes, Genomes, Genetics, 2019, 9, 807-816.	1.8	25
69	The foxtail millet (<i>Setaria italica</i>) terpene synthase gene family. Plant Journal, 2020, 103, 781-800.	5.7	25
70	Genetic architecture, biochemical underpinnings and ecological impact of floral <scp>UV</scp> patterning. Molecular Ecology, 2016, 25, 1122-1140.	3.9	24
71	The Divergence of Flowering Time Modulated by FT/TFL1 Is Independent to Their Interaction and Binding Activities. Frontiers in Plant Science, 2017, 8, 697.	3.6	24
72	Network Analysis Reveals a Role for Salicylic Acid Pathway Components in Shade Avoidance. Plant Physiology, 2018, 178, 1720-1732.	4.8	24

#	Article	IF	CITATIONS
73	Building Integrated Models of Plant Growth and Development. Plant Physiology, 2003, 132, 436-439.	4.8	22
74	Tomato phyE Is Required for Shade Avoidance in the Absence of phyB1 and phyB2. Frontiers in Plant Science, 2016, 7, 1275.	3.6	22
75	Flower orientation influences floral temperature, pollinator visits and plant fitness. New Phytologist, 2021, 232, 868-879.	7.3	22
76	New Arabidopsis Advanced Intercross Recombinant Inbred Lines Reveal Female Control of Nonrandom Mating. Plant Physiology, 2014, 165, 175-185.	4.8	21
77	Using RNA-Seq for Genomic Scaffold Placement, Correcting Assemblies, and Genetic Map Creation in a Common <i>Brassica rapa</i> Mapping Population. G3: Genes, Genomes, Genetics, 2017, 7, 2259-2270.	1.8	15
78	Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development. PLoS Genetics, 2019, 15, e1008367.	3.5	15
79	Plant Development: Slowing Root Growth Naturally. Current Biology, 2004, 14, R395-R396.	3.9	6
80	Plant phenotyping using multi-view stereo vision with structured lights. Proceedings of SPIE, 2016, , .	0.8	6
81	The Generation of Doubled Haploid Lines for QTL Mapping. Methods in Molecular Biology, 2017, 1610, 39-57.	0.9	6
82	MYCs and PIFs Act Independently in Arabidopsis Growth Regulation. G3: Genes, Genomes, Genetics, 2020, 10, 1797-1807.	1.8	6
83	Recent advances in regulation of flowering. F1000 Biology Reports, 2010, 2, .	4.0	2
84	Multiple Loci Control Variation in Plasticity to Foliar Shade Throughout Development in <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2020, 10, 4103-4114.	1.8	1