Wilfried Rossoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999790/publications.pdf

Version: 2024-02-01

40 papers 4,862 citations

30 h-index 302126 39 g-index

41 all docs

41 docs citations

41 times ranked

5372 citing authors

#	Article	IF	CITATIONS
1	Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation. Acta Neuropathologica Communications, 2022, 10, 22.	5.2	22
2	Commentary: Current Status of Gene Therapy for Spinal Muscular Atrophy. Frontiers in Cellular Neuroscience, 2022, 16, .	3.7	1
3	Hexanucleotide Repeat Expansions in c9FTD/ALS and SCA36 Confer Selective Patterns of Neurodegeneration InÂVivo. Cell Reports, 2020, 31, 107616.	6.4	37
4	Traffic jam at the nuclear pore: All roads lead to nucleocytoplasmic transport defects in ALS/FTD. Neurobiology of Disease, 2020, 140, 104835.	4.4	45
5	Chimeric Peptide Species Contribute to Divergent Dipeptide Repeat Pathology in c9ALS/FTD and SCA36. Neuron, 2020, 107, 292-305.e6.	8.1	51
6	Crosstalk of Local Translation and Mitochondria: Powering Plasticity in Axons and Dendrites. Neuron, 2019, 101, 204-206.	8.1	23
7	mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Research, 2018, 1693, 75-91.	2.2	56
8	TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nature Neuroscience, 2018, 21, 228-239.	14.8	404
9	RNP Assembly Defects in Spinal Muscular Atrophy. Advances in Neurobiology, 2018, 20, 143-171.	1.8	18
10	The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Reports, 2017, 18, 1660-1673.	6.4	58
11	Spatially and temporally regulating translation via <scp>mRNA</scp> â€binding proteins in cellular and neuronal function. FEBS Letters, 2017, 591, 1508-1525.	2.8	27
12	Post-transcriptional Inhibition of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple Models of ALS. Cell Reports, 2017, 21, 110-125.	6.4	83
13	[O2–18–01]: TDPâ€43 PATHOLOGY DISRUPTS NUCLEAR PORE COMPLEXES AND NUCLEOCYTOPLASMIC TRANSPORT IN ALS/FTD. Alzheimer's and Dementia, 2017, 13, P602.	0.8	O
14	Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons. Journal of Neuroscience, 2016, 36, 3811-3820.	3.6	138
15	A role for the survival of motor neuron protein in mRNP assembly and transport. Current Opinion in Neurobiology, 2016, 39, 53-61.	4.2	67
16	Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia. Molecular Neurodegeneration, 2016, 11, 46.	10.8	82
17	A human pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia recapitulates patient-specific drug responses. DMM Disease Models and Mechanisms, 2016, 9, 927-39.	2.4	45
18	Dysregulation of mRNA Localization and Translation in Genetic Disease. Journal of Neuroscience, 2016, 36, 11418-11426.	3.6	89

#	Article	IF	CITATIONS
19	PABPN1 suppresses TDP-43 toxicity in ALS disease models. Human Molecular Genetics, 2015, 24, 5154-5173.	2.9	19
20	Dynamics of survival of motor neuron (SMN) protein interaction with the mRNAâ€binding protein IMP1 facilitates its trafficking into motor neuron axons. Developmental Neurobiology, 2014, 74, 319-332.	3.0	89
21	The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Human Molecular Genetics, 2012, 21, 3703-3718.	2.9	195
22	Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 2012, 488, 499-503.	27.8	522
23	Spinal muscular atrophy: The role of SMN in axonal mRNA regulation. Brain Research, 2012, 1462, 81-92.	2.2	177
24	Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination. PLoS ONE, 2012, 7, e38658.	2.5	98
25	The COPI vesicle complex binds and moves with survival motor neuron within axons. Human Molecular Genetics, 2011, 20, 1701-1711.	2.9	71
26	The Survival of Motor Neuron (SMN) Protein Interacts with the mRNA-Binding Protein HuD and Regulates Localization of Poly(A) mRNA in Primary Motor Neuron Axons. Journal of Neuroscience, 2011, 31, 3914-3925.	3.6	197
27	High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function. Molecular Neurodegeneration, 2010, 5, 17.	10.8	67
28	The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal \hat{l}^2 -actin mRNA translocation in spinal motor neurons. Human Molecular Genetics, 2010, 19, 1951-1966.	2.9	101
29	Spinal Muscular Atrophy and a Model for Survival of Motor Neuron Protein Function in Axonal Ribonucleoprotein Complexes. Results and Problems in Cell Differentiation, 2009, 48, 87-107.	0.7	56
30	Plastin 3 Is a Protective Modifier of Autosomal Recessive Spinal Muscular Atrophy. Science, 2008, 320, 524-527.	12.6	434
31	The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn / mice and results in a mouse with spinal muscular atrophy. Human Molecular Genetics, 2007, 16, 2648-2648.	2.9	1
32	Multiprotein Complexes of the Survival of Motor Neuron Protein SMN with Gemins Traffic to Neuronal Processes and Growth Cones of Motor Neurons. Journal of Neuroscience, 2006, 26, 8622-8632.	3.6	178
33	Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7871-7876.	7.1	29
34	Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nature Neuroscience, 2005, 8, 1169-1178.	14.8	115
35	Characterization of Ighmbp2 in motor neurons and implications for the pathomechanism in a mouse model of human spinal muscular atrophy with respiratory distress type 1 (SMARD1). Human Molecular Genetics, 2004, 13, 2031-2042.	2.9	82
36	Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. Journal of Cell Biology, 2003, 163, 801-812.	5.2	588

#	Article	IF	CITATIONS
37	Missense mutation in the <i>tubulin-specific chaperone E</i> (<i>Tbce</i>) gene in the mouse mutant <i>progressive motor neuronopathy</i> , a model of human motoneuron disease. Journal of Cell Biology, 2002, 159, 563-569.	5.2	114
38	Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10126-10131.	7.1	73
39	Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons?. Human Molecular Genetics, 2002, 11, 93-105.	2.9	250
40	Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Human Molecular Genetics, 2000, 9, 341-346.	2.9	160