Wei-Qing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999449/publications.pdf

Version: 2024-02-01

215 papers

8,187 citations

42 h-index 83 g-index

216 all docs

216 docs citations

216 times ranked

9382 citing authors

#	Article	IF	CITATIONS
1	MOFs-derived porous carbon/NiFeP hierarchical flower-like nanoarchitectures for efficient overall water splitting. Journal Physics D: Applied Physics, 2022, 55, 055502.	1.3	O
2	A host–guest self-assembly strategy to enhance π-electron densities in ultrathin porous carbon nitride nanocages toward highly efficient hydrogen evolution. Chemical Engineering Journal, 2022, 430, 132880.	6.6	33
3	Highly efficient tree search algorithm for irreducible site-occupancy configurations. Physical Review B, 2022, 105, .	1.1	6
4	Two-dimensional chromium phosphorus monolayer based gas sensors to detect NOx: A first-principles study. Results in Physics, 2022, 32, 105100.	2.0	10
5	Symmetry-Breaking-Induced Multifunctionalities of Two-Dimensional Chromium-Based Materials for Nanoelectronics and Clean Energy Conversion. Physical Review Applied, 2022, 18, .	1.5	18
6	A two-dimensional MoS2/SnS heterostructure for promising photocatalytic performance: First-principles investigations. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114453.	1.3	17
7	Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide*. Chinese Physics B, 2021, 30, 027101.	0.7	2
8	Promoting a Weak Coupling of Monolayer MoSe ₂ Grown on (100)-Faceted Au Foil. ACS Nano, 2021, 15, 4481-4489.	7.3	16
9	Co-Cu-P nanosheet-based open architecture for high-performance oxygen evolution reaction. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
10	Supersaturation-triggered synthesis of 2D/1D phosphide heterostructures as multi-functional catalysts for water splitting. Applied Physics Letters, 2021, 118 , .	1.5	10
11	Highâ€Throughput Oneâ€Photon Excitation Pathway in 0D/3D Heterojunctions for Visibleâ€Light Driven Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2100816.	7.8	92
12	Effects of Se substitution on the Schottky barrier of a MoS _x Se _(2a^x) /graphene heterostructure. Journal Physics D: Applied Physics, 2021, 54, 265302.	1.3	5
13	Unraveling the Mechanism of Near-Infrared Thermally Activated Delayed Fluorescence of TPA-Based Molecules: Effect of Hydrogen Bond Steric Hindrance. Journal of Physical Chemistry A, 2021, 125, 2905-2912.	1.1	9
14	Oneâ€Photon Excitation Pathway: Highâ€Throughput Oneâ€Photon Excitation Pathway in 0D/3D Heterojunctions for Visibleâ€Light Driven Hydrogen Evolution (Adv. Funct. Mater. 18/2021). Advanced Functional Materials, 2021, 31, 2170125.	7.8	1
15	Construction of ZnxCd1â^'xS/CeO2 composites for enhanced photocatalytic activity and stability by chemical precipitation method. Modern Physics Letters B, 2021, 35, 2150333.	1.0	O
16	Novel urchin-like CoNiP as advanced pH-universal electrocatalysts toward hydrogen evolution reaction. Journal Physics D: Applied Physics, 2021, 54, 365502.	1.3	5
17	Amorphous B-doped graphitic carbon nitride quantum dots with high photoluminescence quantum yield of near 90% and their sensitive detection of Fe2+/Cd2+. Science China Materials, 2021, 64, 3037-3050.	3.5	17
18	2D Amorphous CoO Incorporated g ₃ N ₄ Nanotubes for Improved Photocatalytic Performance. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100254.	1.2	6

#	Article	IF	CITATIONS
19	High-throughput computational design for 2D van der Waals functional heterostructures: Fragility of Anderson's rule and beyond. Applied Physics Letters, 2021, 119, .	1.5	24
20	Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation. Journal of Materials Science and Technology, 2021, 86, 210-218.	5.6	18
21	Effects of electric field and strain on the Schottky barrier of the bilayer van der Waals heterostructures of graphene and pure/hydrogenated PC3 monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 133, 114785.	1.3	3
22	Monolayer PtTe2: A promising candidate for NO2 sensor with ultrahigh sensitivity and selectivity. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114925.	1.3	11
23	Generalized Synthetic Strategy for Amorphous Transition Metal Oxidesâ€Based 2D Heterojunctions with Superb Photocatalytic Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2021, 31, 2009230.	7.8	97
24	Theoretical study of cellulose II nanocrystals with different exposed facets. Scientific Reports, 2021, 11, 21871.	1.6	4
25	Dipole Engineering of Two-Dimensional van der Waals Heterostructures for Enhanced Power-Conversion Efficiency: The Case of Janus <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"> overflow="scroll"> overflow="scroll" overflow="scroll"</mml:math>	1.5 :mi>Se <td>39 ıml:mi><mnıl< td=""></mnıl<></td>	39 ıml:mi> <mnıl< td=""></mnıl<>
26	In situ construction of hierarchical graphitic carbon nitride homojunction as robust bifunctional photoelectrocatalyst for overall water splitting. Journal of Chemical Technology and Biotechnology, 2020, 95, 758-769.	1.6	6
27	Interfacial charge modulation: carbon quantum dot implanted carbon nitride double-deck nanoframes for robust visible-light photocatalytic tetracycline degradation. Nanoscale, 2020, 12, 3135-3145.	2.8	45
28	Ultrahigh Sensitivity and Selectivity of Pentagonal SiC ₂ Monolayer Gas Sensors: The Synergistic Effect of Composition and Structural Topology. Physica Status Solidi (B): Basic Research, 2020, 257, 1900445.	0.7	11
29	Algorithm for generating irreducible site-occupancy configurations. Physical Review B, 2020, 102, .	1.1	16
30	NiFe ₂ O ₄ /NiFeP Heterostructure Grown on Nickel Foam as an Efficient Electrocatalyst for Water Oxidation. ChemElectroChem, 2020, 7, 4047-4054.	1.7	15
31	Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: One-Step synthesis and highly efficient catalytic hydrogen generation. Chemical Engineering Journal, 2020, 397, 125470.	6.6	72
32	Hierarchical Self-assembly of Well-Defined Louver-Like P-Doped Carbon Nitride Nanowire Arrays with Highly Efficient Hydrogen Evolution. Nano-Micro Letters, 2020, 12, 52.	14.4	45
33	Type-II/type-II band alignment to boost spatial charge separation: a case study of g-C ₃ N ₄ quantum dots/a-TiO ₂ /r-TiO ₂ for highly efficient photocatalytic hydrogen and oxygen evolution. Nanoscale, 2020, 12, 6037-6046.	2.8	79
34	From monolayer to lateral heterostructure of functionalized phosphorus carbide: Evolution of electronic properties. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113962.	1.3	6
35	A design rule for two-dimensional van der Waals heterostructures with unconventional band alignments. Physical Chemistry Chemical Physics, 2020, 22, 3037-3047.	1.3	19
36	Organic Small Molecule Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1906015.	11.1	56

#	Article	IF	Citations
37	Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure. Nanoscale Research Letters, 2020, 15, 180.	3.1	15
38	Design of Dual-Band Plasmon-Induced Transparent Effect Based on Composite Structure of Closed-Ring and Square Patch. Plasmonics, 2019, 14, 533-538.	1.8	18
39	Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable <i>in situ</i> surface engineering and morphology. Nanoscale, 2019, 11, 16393-16405.	2.8	45
40	Monolayer Phosphorene–Carbon Nanotube Heterostructures for Photocatalysis: Analysis by Density Functional Theory. Nanoscale Research Letters, 2019, 14, 233.	3.1	10
41	Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer. Journal Physics D: Applied Physics, 2019, 53, 015502.	1.3	28
42	Broadband terahertz metamaterial absorber enabled by using high-loss dielectric materials. Materials Research Express, 2019, 6, 105804.	0.8	2
43	Quad-Spectral Perfect Metamaterial Absorber at Terahertz Frequency Based on a Double-Layer Stacked Resonance Structure. Journal of Electronic Materials, 2019, 48, 2209-2214.	1.0	4
44	Multiple-Band Ultra-Thin Perfect Metamaterial Absorber Using Analogy Split-Ring Resonators. Plasmonics, 2019, 14, 1789-1800.	1.8	12
45	Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition. Journal of Materials Science and Technology, 2019, 35, 2288-2296.	5.6	61
46	0D/2D Z-scheme heterojunctions of g-C3N4 quantum dots/ZnO nanosheets as a highly efficient visible-light photocatalyst. Advanced Powder Technology, 2019, 30, 1576-1583.	2.0	40
47	Tunable Schottky barrier in van der Waals heterostructures of graphene and hydrogenated phosphorus carbide monolayer: first-principles calculations. Journal Physics D: Applied Physics, 2019, 52, 305104.	1.3	18
48	Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Applied Catalysis B: Environmental, 2019, 254, 321-328.	10.8	134
49	Doping-induced enhancement of crystallinity in polymeric carbon nitride nanosheets to improve their visible-light photocatalytic activity. Nanoscale, 2019, 11, 6876-6885.	2.8	128
50	Doping-Induced Hydrogen-Bond Engineering in Polymeric Carbon Nitride To Significantly Boost the Photocatalytic H ₂ Evolution Performance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17341-17349.	4.0	71
51	Hollow BCN microrods with hierarchical multichannel structure as a multifunctional material: Synergistic effects of structural topology and composition. Carbon, 2019, 148, 231-240.	5.4	29
52	Protonated supramolecular complex-induced porous graphitic carbon nitride nanosheets as bifunctional catalyst for water oxidation and organic pollutant degradation. Journal of Materials Science, 2019, 54, 7637-7650.	1.7	16
53	Electrostatic Potential Anomaly in 2D Janus Transition Metal Dichalcogenides. Annalen Der Physik, 2019, 531, 1900369.	0.9	13
54	Penta-Graphene as a Potential Gas Sensor for NOx Detection. Nanoscale Research Letters, 2019, 14, 306.	3.1	52

#	Article	IF	CITATIONS
55	Hydroxy-carbonate-assisted synthesis of high porous graphitic carbon nitride with broken of hydrogen bonds as a highly efficient visible-light-driven photocatalyst. Journal Physics D: Applied Physics, 2019, 52, 105502.	1.3	32
56	Twoâ€Dimensional GaX/SnS ₂ (<i>X</i> = S, Se) van der Waals Heterostructures for Photovoltaic Application: Heteroatom Doping Strategy to Boost Power Conversion Efficiency. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800565.	1.2	35
57	Isotype heterojunction g-C ₃ N ₄ /g-C ₃ N ₄ nanosheets as 2D support to highly dispersed 0D metal oxide nanoparticles: Generalized self-assembly and its high photocatalytic activity. Journal Physics D: Applied Physics, 2019, 52, 025501.	1.3	46
58	Porous graphitic carbon nitride with lamellar structure: Facile synthesis via in-site supramolecular self-assembly in alkaline solutions and superior photocatalytic activity. Advanced Powder Technology, 2019, 30, 120-125.	2.0	8
59	Insights Into Interfacial Interaction and Its Influence on the Electronic and Optical Properties of Twoâ€Dimensional WS ₂ /TX ₂ CO ₂ (TX = Ti, Zr) van der Waals Heterostructures. Physica Status Solidi (B): Basic Research, 2019, 256, 1800377.	0.7	2
60	Self-assembled hierarchical carbon/g-C ₃ N ₄ composite with high photocatalytic activity. Journal Physics D: Applied Physics, 2018, 51, 135501.	1.3	12
61	Interfacial Interaction between Boron Cluster and Metal Oxide Surface and Its Effects: A Case Study of B _{Ag}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	1.5	7
62	Facile <i>in situ </i> synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability. Journal Physics D: Applied Physics, 2018, 51, 075501.	1.3	36
63	Design of triple-band polarization controlled terahertz metamaterial absorber. Superlattices and Microstructures, 2018, 114, 225-232.	1.4	13
64	Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets. Journal of Materials Science and Technology, 2018, 34, 2515-2520.	5.6	87
65	Interfacial Interactions in Monolayer and Fewâ€Layer SnS/CH ₃ NH ₃ Pel ₃ Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties. ChemPhysChem, 2018, 19, 291-299.	1.0	12
66	Theory-Driven Heterojunction Photocatalyst Design with Continuously Adjustable Band Gap Materials. Journal of Physical Chemistry C, 2018, 122, 28065-28074.	1.5	20
67	Influence of the imaginary part of the dielectric layer on the bandwidth of metamaterial absorber and the design of broadband absorption. Materials Research Express, 2018, 5, 125803.	0.8	2
68	High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator. Nanoscale Research Letters, 2018, 13, 294.	3.1	59
69	Broadband terahertz perfect light absorber based on the modes of fundamental response and surface lattice resonance. OSA Continuum, 2018, 1, 213.	1.8	1
70	Simplified Design for Broadband and Polarization-Insensitive Terahertz Metamaterial Absorber. IEEE Photonics Technology Letters, 2018, 30, 1115-1118.	1.3	26
71	Facile <i>in situ</i> construction of mediator-free direct Z-scheme g-C ₃ N ₄ /CeO ₂ heterojunctions with highly efficient photocatalytic activity. Journal Physics D: Applied Physics, 2018, 51, 275302.	1.3	110
72	Dispersive and covalent interactions in all-carbon heterostructures consisting of penta-graphene and fullerene: topological effect. Journal Physics D: Applied Physics, 2018, 51, 305301.	1.3	12

#	Article	IF	CITATIONS
73	In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity. Journal of Materials Science, 2018, 53, 15882-15894.	1.7	52
74	Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators. Materials, 2018, 11, 964.	1.3	7
75	Substrate-induced magnetism and topological phase transition in silicene. Nanoscale, 2018, 10, 14667-14677.	2.8	10
76	Simultaneous dispersive and covalent monolayer MoS2/TiO2 cluster heterostructures: Insights into their enhanced photocatalytic activity. Superlattices and Microstructures, 2018, 121, 64-74.	1.4	0
77	Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications. Nanoscale Research Letters, 2018, 13, 137.	3.1	29
78	Mesoporous g-C3N4 Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2018, 18, 5502-5510.	0.9	19
79	Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides. Chinese Optics Letters, 2018, 16, 011301.	1.3	9
80	Tuning the near-gap electronic structure of Cu2O by anion–cation co-doping for enhanced solar energy conversion. Modern Physics Letters B, 2017, 31, 1650429.	1.0	4
81	Electronic and optical properties of Cr-, B-doped, and (Cr, B)-codoped SrTiO ₃ . International Journal of Modern Physics B, 2017, 31, 1750064.	1.0	2
82	Simultaneous covalent and noncovalent carbon nanotube/Ag ₃ PO ₄ hybrids: new insights into the origin of enhanced visible light photocatalytic performance. Physical Chemistry Chemical Physics, 2017, 19, 7955-7963.	1.3	13
83	Construction of g-C 3 N 4 /CeO 2 /ZnO ternary photocatalysts with enhanced photocatalytic performance. Journal of Physics and Chemistry of Solids, 2017, 106, 1-9.	1.9	116
84	Hybrid TiO ₂ /graphene derivatives nanocomposites: is functionalized graphene better than pristine graphene for enhanced photocatalytic activity?. Catalysis Science and Technology, 2017, 7, 1423-1432.	2.1	20
85	Origin of enhanced visible-light photocatalytic activity of transition-metal (Fe, Cr and Co)-doped CeO2: effect of 3d orbital splitting. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	37
86	Two-Dimensional MoS ₂ -Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap. Chemistry of Materials, 2017, 29, 5504-5512.	3.2	131
87	Electric-field-induced widely tunable direct and indirect band gaps in hBN/MoS ₂ van der Waals heterostructures. Journal of Materials Chemistry C, 2017, 5, 4426-4434.	2.7	29
88	Interfacial interaction in monolayer transition metal dichalcogenide/metal oxide heterostructures and its effects on electronic and optical properties: The case of MX ₂ /CeO ₂ . Applied Physics Express, 2017, 10, 011201.	1.1	11
89	Multiple-band light absorber via combining the fundamental mode and multiple splitting modes of the 3-order response of metamaterial resonator. Journal Physics D: Applied Physics, 2017, 50, 485108.	1.3	9
90	Noncovalent Functionalization of Monolayer MoS ₂ with Carbon Nanotubes: Tuning Electronic Structure and Photocatalytic Activity. Journal of Physical Chemistry C, 2017, 121, 21921-21929.	1.5	23

#	Article	IF	CITATIONS
91	Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications. RSC Advances, 2017, 7, 42956-42963.	1.7	67
92	Novel $\langle i \rangle \hat{l}^2 \langle i \rangle$ -C $\langle sub \rangle 3 \langle sub \rangle$ N $\langle sub \rangle 4 \langle sub \rangle$ CuO nanoflakes: facile synthesis and unique photocatalytic performance. Journal Physics D: Applied Physics, 2017, 50, 355501.	1.3	10
93	The mechanism of enhanced photocatalytic activity of SnO 2 through fullerene modification. Current Applied Physics, 2017, 17, 1547-1556.	1.1	14
94	Single Metamaterial Resonator Having Five-Band Terahertz Near-Perfect Absorption. IEEE Photonics Technology Letters, 2017, 29, 1888-1891.	1.3	13
95	Facile one-step in-situ synthesis of type-II CeO2/CeF3 composite with tunable morphology and photocatalytic activity. Ceramics International, 2016, 42, 16374-16381.	2.3	15
96	Dual role of monolayer MoS2 in enhanced photocatalytic performance of hybrid MoS2/SnO2 nanocomposite. Journal of Applied Physics, 2016, 119, .	1.1	57
97	Insights into enhanced visible-light photocatalytic activity of C ₆₀ modified g-C ₃ N ₄ hybrids: the role of nitrogen. Physical Chemistry Chemical Physics, 2016, 18, 33094-33102.	1.3	31
98	Tunable synthesis of various ZnO architectural structures with enhanced photocatalytic activities. Materials Letters, 2016, 175, 68-71.	1.3	23
99	Electronic properties and photoactivity of monolayer MoS ₂ /fullerene van der Waals heterostructures. RSC Advances, 2016, 6, 43228-43236.	1.7	28
100	A facile and rapid route for synthesis of g-C ₃ N ₄ nanosheets with high adsorption capacity and photocatalytic activity. RSC Advances, 2016, 6, 86688-86694.	1.7	81
101	Mechanism of enhanced photocatalytic activities on tungsten trioxide doped with sulfur: Dopant-type effects. Modern Physics Letters B, 2016, 30, 1650340.	1.0	6
102	Non-covalent functionalization of WS ₂ monolayer with small fullerenes: tuning electronic properties and photoactivity. Dalton Transactions, 2016, 45, 13383-13391.	1.6	22
103	Dual functions of 2D WS ₂ and MoS ₂ â€"WS ₂ monolayers coupled with a Ag ₃ PO ₄ photocatalyst. Semiconductor Science and Technology, 2016, 31, 095013.	1.0	8
104	Enhanced photocatalytic activity of hexagonal flake-like Bi ₂ S ₃ / ZnS composites with a large percentage of reactive facets. Journal Physics D: Applied Physics, 2016, 49, 305105.	1.3	17
105	Dramatically Enhanced Visible Light Response of Monolayer ZrS2 via Non-covalent Modification by Double-Ring Tubular B20 Cluster. Nanoscale Research Letters, 2016, 11, 495.	3.1	25
106	Facile route to fabricate carbon-doped TiO2 nanoparticles and its mechanism of enhanced visible light photocatalytic activity. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1,1	16
107	Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects. Scientific Reports, 2016, 6, 22267.	1.6	24
108	Broadband coplane metamaterial filter based on two nested split-ring-resonators. Frontiers of Optoelectronics, 2016, 9, 565-570.	1.9	1

#	Article	IF	Citations
109	Facile ion-exchange synthesis of mesoporous Bi 2 S 3 /ZnS nanoplate with high adsorption capability and photocatalytic activity. Journal of Colloid and Interface Science, 2016, 464, 103-109.	5.0	35
110	Enhanced photocatalytic performance of an Ag ₃ PO ₄ photocatalyst via fullerene modification: first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 2878-2886.	1.3	22
111	Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes. Applied Surface Science, 2016, 370, 427-432.	3.1	50
112	Insights into enhanced visible-light photocatalytic activity of CeO 2 doped with nonmetal impurity from the first principles. Materials Science in Semiconductor Processing, 2016, 41, 200-208.	1.9	44
113	Insights into Enhanced Visible-Light Photocatalytic Hydrogen Evolution of g-C ₃ N ₄ and Highly Reduced Graphene Oxide Composite: The Role of Oxygen. Chemistry of Materials, 2015, 27, 1612-1621.	3.2	252
114	Frequency tunable metamaterial absorber at deep-subwavelength scale. Optical Materials Express, 2015, 5, 227.	1.6	82
115	Origin of photocatalytic activity of nitrogen-doped germanium dioxide under visible light from first principles. Materials Science in Semiconductor Processing, 2015, 31, 517-524.	1.9	8
116	A novel dual-band terahertz metamaterial absorber for a sensor application. Journal of Applied Physics, 2015, 117, .	1.1	252
117	Half-metallic ferromagnetism in Fe-chain-embedded zigzag boron-nitride nanoribbons with line defect. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 431-437.	1.3	2
118	Electronic Structures and Photocatalytic Responses of SrTiO ₃ (100) Surface Interfaced with Graphene, Reduced Graphene Oxide, and Graphane: Surface Termination Effect. Journal of Physical Chemistry C, 2015, 119, 19095-19104.	1.5	32
119	Enhancement of photocatalytic activity of combustion-synthesized CeO2/C3N4 nanoparticles. Applied Physics A: Materials Science and Processing, 2015, 120, 1205-1209.	1.1	18
120	Mass production of ZnxCd1â^'xS nanoparticles with enhanced visible light photocatalytic activity. Materials Letters, 2015, 158, 432-435.	1.3	11
121	A novel photocatalyst CeF ₃ : facile fabrication and photocatalytic performance. RSC Advances, 2015, 5, 95171-95177.	1.7	19
122	Fantastic parity effects on the electronic and magnetic properties of zigzag graphene nanoribbons with side-attached trans-polyacetylene. Europhysics Letters, 2015, 111, 17006.	0.7	3
123	Morphology-controlled SnS2 nanostructures synthesized by refluxing method with high photocatalytic activity. Materials Letters, 2015, 161, 480-483.	1.3	18
124	Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	1,789
125	Enhanced photocatalytic activity and stability of Zn Cd1â^'S/TiO2 nanocomposites synthesized by chemical bath deposition. Materials Letters, 2015, 142, 133-136.	1.3	15
126	Band structure engineering of monolayer MoS ₂ : a charge compensated codoping strategy. RSC Advances, 2015, 5, 7944-7952.	1.7	26

#	Article	lF	Citations
127	Reversal of thermal rectification in one-dimensional nonlinear composite system. Chinese Physics B, 2014, 23, 114401.	0.7	2
128	THE ELECTRONIC AND OPTICAL PROPERTIES OF X-DOPED SrTiO ₃ (X = Rh, Pd,) Tj ETG	Qq <u>Q</u> ,8 0 rg	gBT _g /Overlock i
129	Annealing Effects on Photocatalytic Activity of Zn0.2Cd0.8S Films Prepared by Chemical Bath Deposition. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	5
130	A comparative study on magnetism in Zn-doped AlN and GaN from first-principles. Journal of Applied Physics, 2014, 116, .	1.1	9
131	Tunable bandwidth of the terahertz metamaterial absorber. Optics Communications, 2014, 325, 78-83.	1.0	33
132	The enhanced photocatalytic activity of Ti3+ self-doped TiO2 by a reduction method. Materials Letters, 2014, 122, 33-36.	1.3	32
133	A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber. Applied Physics A: Materials Science and Processing, 2014, 115, 1187-1192.	1.1	67
134	Frequency Continuous Tunable Terahertz Metamaterial Absorber. Journal of Lightwave Technology, 2014, 32, 1183-1189.	2.7	102
135	Novel 3D flower-like Ag3PO4 microspheres with highly enhanced visible light photocatalytic activity. Materials Letters, 2014, 116, 209-211.	1.3	45
136	Novel Ag ₃ PO ₄ /CeO ₂ composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A, 2014, 2, 1750-1756.	5.2	251
137	Broadband, polarization-insensitive and wide-angle terahertz metamaterial absorber. Physica Scripta, 2014, 89, 115501.	1.2	18
138	Band engineering of ZnS by codoping for visible-light photocatalysis. Applied Physics A: Materials Science and Processing, 2014, 116, 741-750.	1.1	32
139	Band gap engineering by lanthanide doping in the photocatalyst LaOF: First-principles study. International Journal of Modern Physics B, 2014, 28, 1450069.	1.0	6
140	Theoretical Investigation of Broadband and Wide-Angle Terahertz Metamaterial Absorber. IEEE Photonics Technology Letters, 2014, 26, 111-114.	1.3	176
141	Interfacial Interactions of Semiconductor with Graphene and Reduced Graphene Oxide: CeO ₂ as a Case Study. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20350-20357.	4.0	71
142	A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber. Applied Physics Express, 2014, 7, 082601.	1.1	40
143	Spin and band-gap engineering in zigzag graphene nanoribbons with methylene group. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 63, 259-263.	1.3	6
144	Native vacancy defects in bismuth sulfide. International Journal of Modern Physics B, 2014, 28, 1450150.	1.0	15

#	Article	IF	Citations
145	From the Coulomb blockade regime to the Non-Coulomb blockade regime. Physica B: Condensed Matter, 2014, 454, 82-85.	1.3	2
146	Electrospinning preparation of p-type NiO/n-type CeO 2 heterojunctions with enhanced photocatalytic activity. Materials Letters, 2014, 133, 109-112.	1.3	37
147	A broadband, polarisation-insensitive and wide-angle coplanar terahertz metamaterial absorber. European Physical Journal B, 2014, 87, 1.	0.6	13
148	Facile shape-controllable synthesis of Ag 3 PO 4 photocatalysts. Materials Letters, 2014, 133, 139-142.	1.3	33
149	Theoretical insight into the electronic and photocatalytic properties of Cu2O from a hybrid density functional theory. Materials Science in Semiconductor Processing, 2014, 23, 34-41.	1.9	16
150	Mechanism of Superior Visible-Light Photocatalytic Activity and Stability of Hybrid Ag ₃ PO ₄ /Graphene Nanocomposite. Journal of Physical Chemistry C, 2014, 118, 12972-12979.	1.5	78
151	Metamaterial-Based Low-Conductivity Alloy Perfect Absorber. Journal of Lightwave Technology, 2014, 32, 2293-2298.	2.7	49
152	Band-Gap Widening of Nitrogen-Doped Cu ₂ O: New Insights from First-Principles Calculations. Science of Advanced Materials, 2014, 6, 1221-1227.	0.1	10
153	Luminescent and photocatalytic properties of hollow SnO2 nanospheres. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 725-729.	1.7	16
154	Efficient ultraviolet emission of ZnS nanospheres: Co doping enhancement. Materials Letters, 2013, 100, 237-240.	1.3	24
155	A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, 2013, 303, 13-14.	1.0	23
156	<pre><mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ag</mml:mtext></mml:mrow><mml:mn mathvariant="bold">3</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mtext>PO</mml:mtext>4</mml:mrow></mml:msub></mml:mrow></mml:math>Sequenced</pre>	mrolus> <m< td=""><td>ml38n</td></m<>	ml 38 n
157	Photocatalyst: Possibilities and Challenges. Journal of Nanomaterials, 2013, 2013, 1-8. Electronic and magnetism properties of half-bare zigzag silicon carbon nanoribbons from hybrid density functional calculations. Solid State Communications, 2013, 158, 25-28.	0.9	7
158	Coupling effect of La doping and porphyrin sensitization on photocatalytic activity of nanocrystalline TiO2. Materials Letters, 2013, 108, 37-40.	1.3	32
159	Enhanced ferromagnetism by adding electrons in triple-decker Gd–phthalocyanine. Physica Scripta, 2013, 87, 045701.	1.2	1
160	Tuning bandgap of a double-tooth-shaped MIM waveguide filter by control widths of the teeth. Journal of Optics (United Kingdom), 2013, 15, 055008.	1.0	40
161	Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes. Applied Optics, 2012, 51, 5735.	0.9	14
162	Optical transmission through double-layer compound metallic gratings with subwavelength slits. Journal of Modern Optics, 2012, 59, 1342-1348.	0.6	10

#	Article	IF	Citations
163	Asymmetric light propagation in composition-graded semiconductor nanowires. Scientific Reports, 2012, 2, 820.	1.6	60
164	Enhanced visible-light photoactivity of La-doped ZnS thin films. Applied Physics A: Materials Science and Processing, 2012, 108, 895-900.	1.1	34
165	Wavelength-Converted/Selective Waveguiding Based on Composition-Graded Semiconductor Nanowires. Nano Letters, 2012, 12, 5003-5007.	4.5	87
166	Orientation-controlled synthesis and magnetism of single crystalline Co nanowires. Journal of Magnetism and Magnetic Materials, 2012, 324, 4043-4047.	1.0	10
167	A triangular shaped channel MIM waveguide filter. Journal of Modern Optics, 2012, 59, 1686-1689.	0.6	18
168	Effects of contact shape on ballistic phonon transport in semiconductor nanowires. Current Applied Physics, 2012, 12, 437-442.	1.1	0
169	Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Advanced Powder Technology, 2012, 23, 8-12.	2.0	198
170	Annealing effects on photocatalytic activity of ZnS films prepared by chemical bath deposition. Materials Letters, 2012, 75, 221-224.	1.3	33
171	Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Materials Letters, 2012, 83, 104-107.	1.3	46
172	Effect of Gaussian acoustic nanocavities in a narrow constriction on ballistic phonon transmission. Applied Physics A: Materials Science and Processing, 2011, 104, 635-642.	1.1	2
173	Stress-induced phase transformation and strain rate effect in polycrystalline Mo nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1131-1139.	1.3	9
174	Ballistic phonon transport through a Fibonacci array of acoustic nanocavities in a narrow constriction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2000-2006.	0.9	1
175	Ballistic phonon transmission in quasiperiodic acoustic nanocavities. Journal of Applied Physics, 2011, 109, 084310.	1.1	3
176	Ballistic phonon transmission in a symmetric converging–diverging contact of a semiconductor nanowire. Journal Physics D: Applied Physics, 2011, 44, 105102.	1.3	2
177	Optical Characteristics of La-Doped ZnS Thin Films Prepared by Chemical Bath Deposition. Chinese Physics Letters, 2011, 28, 027806.	1.3	11
178	BALLISTIC PHONON TRANSPORT THROUGH GAUSSIAN ACOUSTIC NANOCAVITIES. Modern Physics Letters B, 2011, 25, 1631-1642.	1.0	4
179	MODIFICATION OF OPTICAL TRANSITION PROBABILITY IN SEMICONDUCTOR SUPERLATTICES: EFFECTS OF STRUCTURAL DEFECT AND LAYER THICKNESS. International Journal of Modern Physics B, 2011, 25, 4533-4541.	1.0	3
180	LOCALIZED WANNIER EXCITON IN DEFECT LAYER EMBEDDED BETWEEN TWO SEMI-INFINITE SUPERLATTICES. International Journal of Modern Physics B, 2010, 24, 3501-3511.	1.0	0

#	Article	IF	Citations
181	Material properties dependence of ballistic phonon transmission through two coupled nanocavities. Journal of Applied Physics, 2009, 105, 124305.	1.1	10
182	Acoustic phonon transport in a four-channel quantum structure. Journal of Applied Physics, 2009, 105, 104515.	1.1	7
183	INVESTIGATION OF BIAXIAL ELASTIC MODULUS AND CTE OF BaTiO3 FILMS. International Journal of Modern Physics B, 2009, 23, 4933-4941.	1.0	1
184	Selective transmission and enhanced thermal conductance of ballistic phonon by nanocavities embedded in a narrow constriction. Journal Physics D: Applied Physics, 2009, 42, 015101.	1.3	8
185	Acoustic phonons transport in a quantum waveguide embedded double defects. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1864-1871.	1.3	3
186	Magnetic properties of CoFeP films prepared by electroless deposition. Journal of Magnetism and Magnetic Materials, 2009, 321, 1177-1181.	1.0	17
187	Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits. International Journal of Materials Research, 2009, 100, 667-671.	0.1	1
188	Effect of diffusion layers and defect layer on acoustic phonons transport through the structure consisting of different films. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5046-5051.	0.9	6
189	Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 3030-3036.	1.3	35
190	Heat transport in a four-perpendicularity-bend quantum waveguide. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5816-5824.	0.9	8
191	Propagation characteristics of the silica and silicon subwavelength-diameter hollow wire waveguides. Chinese Optics Letters, 2008, 6, 732-735.	1.3	5
192	A wide bandgap plasmonic Bragg reflector. Optics Express, 2008, 16, 4888.	1.7	134
193	Selective transport of ballistic phonon modes by an acoustic nanocavity in a $\hat{\Gamma}$ -shaped semiconductor nanowire. Journal of Applied Physics, 2008, 104, 054309.	1.1	10
194	Acoustic phonon transport and thermal conductance in a periodically modulated quantum wire. Journal Physics D: Applied Physics, 2007, 40, 1497-1500.	1.3	11
195	Phonon-cavity-enhanced low-temperature thermal conductance of a semiconductor nanowire with narrow constrictions. Physical Review B, 2007, 75, .	1.1	24
196	Acoustic phonon transport through a quantum waveguide with two stubs. Journal Physics D: Applied Physics, 2007, 40, 6105-6111.	1.3	5
197	Surface phonon polaritons in a semi-infinite superlattice with a cap layer consisting of ternary crystal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 360, 638-644.	0.9	11
198	Preparation and luminescence properties of nanocrystalline La2O3:Eu phosphor. Materials Letters, 2007, 61, 1968-1970.	1.3	36

#	Article	IF	CITATIONS
199	The influence of Nd on the corrosion behavior of electroless-deposited Fe–P. International Journal of Materials Research, 2007, 98, 217-220.	0.1	4
200	Coupling effect on phonon thermal transport in a double-stub quantum wire. Applied Physics Letters, 2006, 88, 163505.	1.5	45
201	The influence of boundary conditions on thermal conductance in semiconductor quantum wire with structural defect. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 359, 234-240.	0.9	11
202	Electrochemical study of electroless deposition of Fe–P alloys. Electrochimica Acta, 2006, 51, 4471-4476.	2.6	31
203	A surface optical phonon assisted transition in a semi-infinite superlattice with a cap layer. Semiconductor Science and Technology, 2006, 21, 751-757.	1.0	15
204	The evolution of interface phonon–polariton modes in a finite superlattice with a structural defect. Semiconductor Science and Technology, 2006, 21, 1584-1591.	1.0	2
205	Localized electronic states in -layer-based superlattices with structural defects. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 374-384.	1.3	3
206	Discontinuity effect on the phonon transmission and thermal conductance in a dielectric quantum waveguide. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 336, 245-252.	0.9	28
207	Preparation of amorphous rare-earth films of Ni–Re–P (Re=Ce, Nd) by electrodeposition from an aqueous bath. Surface and Coatings Technology, 2005, 192, 208-212.	2.2	18
208	The evolution of the localized interface optical-phonon modes in a finite superlattice with a structural defect. Semiconductor Science and Technology, 2005, 20, 1027-1033.	1.0	6
209	Acoustic-phonon transmission and thermal conductance in a double-bend quantum waveguide. Journal of Applied Physics, 2005, 98, 093524.	1.1	39
210	LATTICE THERMAL CONDUCTIVITY IN A HOLLOW SILICON NANOWIRE. International Journal of Modern Physics B, 2005, 19, 1017-1027.	1.0	19
211	Influence of the coupling between the normal and lateral motions on surface states of a semi-infinite superlattice with a cap layer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 325, 70-78.	0.9	7
212	The electrochemical behavior and surface structure of titanium electrodes modified by ion beams. Applied Surface Science, 2004, 236, 13-17.	3.1	3
213	The mechanical performance and anti-corrosion behavior of diamond-like carbon film. Diamond and Related Materials, 2003, 12, 1406-1410.	1.8	44
214	Generalized Multidentate Ligand Chelatingâ€Grafting Strategy for Construction of Amorphous Metal Oxidesâ€Based Tripleâ€Layered Nanotubes. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
215	Dataâ€Driven Approach to Designing Twoâ€dimensional Van der Waals Heterostructures: Misjudgment of Band Alignment Type and its mechanism. Physica Status Solidi - Rapid Research Letters, 0, , .	1.2	2