Nahuel A Scheifler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6998556/publications.pdf

Version: 2024-02-01

NAHUEL A SCHELELER

#	Article	IF	CITATIONS
1	Isotopic Ecology in Modern and Holocene Populations of Pampas Deer (<i>Ozotoceros) Tj ETQq1 1 0.784314 rgB</i>	T /Overlo	ck 10 Tf 50 4
1	Ecological Models of Hunter-gatherer Subsistence. Environmental Archaeology, 2023, 28, 45-61.	1.2	4
2	Determination of polycyclic aromatic hydrocarbon (PAH) contents in micro-volumes of the whole blood and liver of Red Kite by a simplified GC-MS/MS method. International Journal of Environmental Analytical Chemistry, 2022, 102, 834-843.	3.3	8
3	Vegetation shapes aboveground invertebrate communities more than soil properties and pollution: a preliminary investigation on a metal-contaminated site. Environmental Science and Pollution Research, 2022, 29, 2792-2805.	5.3	1
4	Transporting rocks to an empty environment of lithic raw materials. The case of the Central Pampean Dunefields (Argentina). Journal of Archaeological Science: Reports, 2019, 25, 433-446.	0.5	12
5	How Do Richness and Composition of Diet Shape Trace Metal Exposure in a Free-Living Generalist Rodent, <i>Apodemus sylvaticus</i> . Environmental Science & Technology, 2019, 53, 5977-5986.	10.0	6
6	Was the Central Pampean Dunefields of Argentina Occupied during the Late Pleistocene? A Reappraisal of the Evidence. PaleoAmerica, 2019, 5, 378-391.	1.5	7
7	Is blood a reliable indicator of trace metal concentrations in organs of small mammals?. Chemosphere, 2019, 217, 320-328.	8.2	8
8	Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today. Scientific Reports, 2018, 8, 3436.	3.3	44
9	Reconstructing the Deep Population History of Central and South America. Cell, 2018, 175, 1185-1197.e22.	28.9	259
10	Does pollution influence small mammal diet in the field? A metabarcoding approach in a generalist consumer. Molecular Ecology, 2018, 27, 3700-3713.	3.9	13
11	A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption. Environmental Pollution, 2017, 226, 240-249.	7.5	19
12	Multi-Element Analysis of Blood Samples in a Passerine Species: Excesses and Deficiencies of Trace Elements in an Urbanization Study. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	10
13	Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia, 2016, 182, 1053-1062.	2.0	32
14	Is the lesser horseshoe bat (Rhinolophus hipposideros) exposed to causes that may have contributed to its decline? A non-invasive approach. Global Ecology and Conservation, 2016, 8, 123-137.	2.1	24
15	Prediction of Extractable Cd, Pb and Zn in Contaminated Woody Habitat Soils Using a Change Point Detection Method. Pedosphere, 2016, 26, 282-298.	4.0	11
16	From eggs to fledging: negative impact of urban habitat on reproduction in two tit species. Journal of Ornithology, 2016, 157, 377-392.	1.1	67
17	Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress. PLoS ONE, 2015, 10, e0116004.	2.5	26
18	Blood parameters as biomarkers of cadmium and lead exposure and effects in wild wood mice (Apodemus sylvaticus) living along a pollution gradient. Chemosphere, 2015, 138, 940-946.	8.2	23

NAHUEL A SCHEIFLER

#	Article	IF	CITATIONS
19	Histopathology related to cadmium and lead bioaccumulation in chronically exposed wood mice, Apodemus sylvaticus, around a former smelter. Science of the Total Environment, 2014, 481, 167-177.	8.0	55
20	Unintentional Wildlife Poisoning and Proposals for Sustainable Management of Rodents. Conservation Biology, 2014, 28, 315-321.	4.7	71
21	Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France. Science of the Total Environment, 2014, 470-471, 1012-1022.	8.0	30
22	An assessment of the embryotoxicity of cadmium in the terrestrial mollusk Cantareus aspersus: From bioaccumulation to impacts at different levels of biological organization. Ecotoxicology and Environmental Safety, 2014, 110, 89-94.	6.0	14
23	Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica) Tj ETQq1	l 0.784314 8.0	4 rgBT /Over
24	Hair as a noninvasive tool for risk assessment: Do the concentrations of cadmium and lead in the hair of wood mice (Apodemus sylvaticus) reflect internal concentrations?. Ecotoxicology and Environmental Safety, 2014, 108, 233-241.	6.0	34
25	Spatially Explicit Analysis of Metal Transfer to Biota. , 2014, , 69-107.		0
26	Breeding performance of blue tits (Cyanistes cæruleus ultramarinus) in relation to lead pollution and nest failure rates in rural, intermediate, and urban sites in Algeria. Environmental Pollution, 2013, 174, 171-178.	7.5	32
27	Coupling of Random Amplified Polymorphic DNA Profiles Analysis and High Resolution Capillary Electrophoresis System for the Assessment of Chemical Genotoxicity. Environmental Science & Technology, 2013, 47, 9505-9513.	10.0	14
28	Urbanization, Trace Metal Pollution, and Malaria Prevalence in the House Sparrow. PLoS ONE, 2013, 8, e53866.	2.5	71
29	Can Body Condition and Somatic Indices be Used to Evaluate Metal-Induced Stress in Wild Small Mammals?. PLoS ONE, 2013, 8, e66399.	2.5	20
30	Landsnail eggs bioassays: A new tool to assess embryotoxicity of contaminants in the solid, liquid or gaseous phase of soil. Applied Soil Ecology, 2012, 53, 56-64.	4.3	20
31	The diet of migrant Red Kites <i>Milvus milvus</i> during a Water Vole <i>Arvicola terrestris</i> outbreak in eastern France and the associated risk of secondary poisoning by the rodenticide bromadiolone. Ibis, 2012, 154, 136-146.	1.9	23
32	Partitioning of Cd and Pb in the blood of European blackbirds (Turdus merula) from a smelter contaminated site and use for biomonitoring. Chemosphere, 2012, 87, 1368-1373.	8.2	19
33	Influence of landscape composition and diversity on contaminant flux in terrestrial food webs: A case study of trace metal transfer to European blackbirds Turdus merula. Science of the Total Environment, 2012, 432, 275-287.	8.0	44
34	Growth and metal accumulation in Porcellio scaber exposed to poplar litter from Cd-, Pb-, and Zn-contaminated sites. Ecotoxicology and Environmental Safety, 2011, 74, 451-458.	6.0	38
35	Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard. Science of the Total Environment, 2011, 409, 4280-4288.	8.0	44
36	Chemical extractions and predicted free ion activities fail to estimate metal transfer from soil to field land snails. Chemosphere, 2011, 85, 1057-1065.	8.2	23

NAHUEL A SCHEIFLER

#	Article	IF	CITATIONS
37	Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and) Tj ETQq1 1 0.78	4314 rgBT 2.4	/Qverlock
38	Glyphosate and glufosinate-based herbicides: fate in soil, transfer to, and effects on land snails. Journal of Soils and Sediments, 2011, 11, 1373-1384.	3.0	29
39	Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape. PLoS ONE, 2011, 6, e20682.	2.5	46
40	Responses of wild small mammals to a pollution gradient: Host factors influence metal and metallothionein levels. Environmental Pollution, 2010, 158, 827-840.	7.5	61
41	Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere, 2010, 81, 141-155.	8.2	84
42	Towards the development of an embryotoxicity bioassay with terrestrial snails: Screening approach for cadmium and pesticides. Journal of Hazardous Materials, 2010, 184, 26-33.	12.4	27
43	Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail <i>Helix aspersa</i> (Gastropoda, Pulmonata). Environmental Toxicology and Chemistry, 2008, 27, 1533-1542.	4.3	50
44	BIOTIC INTERACTIONS MODIFY THE TRANSFER OF CESIUM-137 IN A SOIL–EARTHWORM–PLANT–SNAIL FO WEB. Environmental Toxicology and Chemistry, 2008, 27, 1698.	OD 4.3	16
45	How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environmental Toxicology and Chemistry, 2008, 27, 1284-1292.	4.3	60
46	Long-term responses of snails exposed to cadmium-contaminated soils in a partial life-cycle experiment. Ecotoxicology and Environmental Safety, 2008, 70, 138-146.	6.0	35
47	Small mammal assemblages and habitat distribution in the northern Junggar Basin, Xinjiang, China: a pilot survey. Mammalia, 2008, 72, .	0.7	14
48	HOW SUBCELLULAR PARTITIONING CAN HELP TO UNDERSTAND HEAVY METAL ACCUMULATION AND ELIMINATION KINETICS IN SNAILS. Environmental Toxicology and Chemistry, 2007, preprint, 1.	4.3	28
49	Modelling chronic exposure to contaminated soil: A toxicokinetic approach with the terrestrial snail Helix aspersa. Environment International, 2006, 32, 866-875.	10.0	49
50	HOW TERRESTRIAL SNAILS CAN BE USED IN RISK ASSESSMENT OF SOILS. Environmental Toxicology and Chemistry, 2006, 25, 797.	4.3	75
51	TRANSFER OF Cd, Cu, Ni, Pb, AND Zn IN A SOIL–PLANT–INVERTEBRATE FOOD CHAIN: A MICROCOSM STUDY. Environmental Toxicology and Chemistry, 2006, 25, 815.	4.3	51
52	INTERSPECIFIC RELATIONSHIPS AMONG SOIL INVERTEBRATES INFLUENCE POLLUTANT EFFECTS OF PHENANTHRENE. Environmental Toxicology and Chemistry, 2006, 25, 120.	4.3	16
53	Distribution of small mammals in a pastoral landscape of the Tibetan plateaus (Western Sichuan,) Tj ETQq1 1 0.78 pastoral du plateau Tibétain (Ouest Sichuan, Chine), et relation avec les pratiques de pâturage. Mammalia, 2006, 70	84314 rgB ⁻ 0.7	T /Overloc <mark>k</mark> 33
54	MERCURY CONCENTRATIONS IN KING PENGUIN (APTENODYTES PATAGONICUS) FEATHERS AT CROZET ISLANDS (SUB-ANTARCTIC): TEMPORAL TREND BETWEEN 1966–1974 AND 2000–2001. Environmental Toxicology and Chemistry, 2005, 24, 125.	4.3	32

#	Article	IF	CITATIONS
55	ASSESSMENT OF WHOLE EFFLUENT TOXICITY ON AQUATIC SNAILS: BIOACCUMULATION OF Cr, Zn, AND Fe, AND INDIVIDUAL EFFECTS IN BIOASSAYS. Environmental Toxicology and Chemistry, 2005, 24, 198.	4.3	17
56	"Nonavailable―Soil Cadmium Is Bioavailable to Snails: Evidence from Isotopic Dilution Experiments. Environmental Science & Technology, 2003, 37, 81-86.	10.0	35