List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6997784/publications.pdf Version: 2024-02-01

YONG CAO

#	Article	IF	CITATIONS
1	Effectiveness and Safety of Inelastic Versus Elastic Lumbosacral Orthoses on Low Back Pain Prevention in Healthy Nurses. Spine, 2022, 47, 656-665.	2.0	1
2	3D visualization and morphometric analysis of spinal motion segments and vascular networks: A synchrotron radiationâ€based micro T study in mice. Journal of Anatomy, 2022, 240, 268-278.	1.5	3
3	Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling. ELife, 2022, 11, .	6.0	9
4	Effect of book-shaped acellular tendon scaffold with bone marrow mesenchymal stem cells sheets on bone–tendon interface healing. Journal of Orthopaedic Translation, 2021, 26, 162-170.	3.9	19
5	<i>Utx</i> Regulates the NF-κB Signaling Pathway of Natural Stem Cells to Modulate Macrophage Migration during Spinal Cord Injury. Journal of Neurotrauma, 2021, 38, 353-364.	3.4	11
6	A combinatorial method to visualize the neuronal network in the mouse spinal cord: combination of a modified Golgi-Cox method and synchrotron radiation micro-computed tomography. Histochemistry and Cell Biology, 2021, 155, 477-489.	1.7	6
7	Knockdown of SNHG1 alleviates autophagy and apoptosis by regulating miR-362-3p/Jak2/stat3 pathway in LPS-injured PC12 cells. Neurochemical Research, 2021, 46, 945-956.	3.3	10
8	The lncRNA Ftx/miR-382-5p/Nrg1 axis improves the inflammation response of microglia and spinal cord injury repair. Neurochemistry International, 2021, 143, 104929.	3.8	25
9	UTX/KDM6A deletion promotes the recovery of spinal cord injury by epigenetically triggering intrinsic neural regeneration. Molecular Therapy - Methods and Clinical Development, 2021, 20, 337-349.	4.1	13
10	Unilateral Limited Laminectomy for Debridement to Treat Localized Shortâ€5egment Lumbosacral Spinal Tuberculosis: A Retrospective Case Series. Orthopaedic Surgery, 2021, 13, 1170-1180.	1.8	9
11	Simultaneous 3D Visualization of the Microvascular and Neural Network in Mouse Spinal Cord Using Synchrotron Radiation Micro-Computed Tomography. Neuroscience Bulletin, 2021, 37, 1469-1480.	2.9	11
12	Bone Marrow Mesenchymal Stem Cell-Derived Exosome-Educated Macrophages Promote Functional Healing After Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2021, 15, 725573.	3.7	15
13	Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/β-catenin pathway-mediated vascular regeneration. Acta Biomaterialia, 2021, 136, 519-532.	8.3	41
14	Local delivery of USC-derived exosomes harboring ANGPTL3 enhances spinal cord functional recovery after injury by promoting angiogenesis. Stem Cell Research and Therapy, 2021, 12, 20.	5.5	54
15	Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Accelerate Functional Recovery After Spinal Cord Injury by Promoting the Phagocytosis of Macrophages to Clean Myelin Debris. Frontiers in Cell and Developmental Biology, 2021, 9, 772205.	3.7	27
16	Microglia-Derived Exosomal microRNA-151-3p Enhances Functional Healing After Spinal Cord Injury by Attenuating Neuronal Apoptosis via Regulating the p53/p21/CDK1 Signaling Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 783017.	3.7	21
17	Comprehensive analysis of N6-methyladenosine (m6A) modification during the degeneration of lumbar intervertebral disc in mice. Journal of Orthopaedic Translation, 2021, 31, 126-138.	3.9	10
18	BMSCsâ€Derived Exosomes Ameliorate Pain Via Abrogation of Aberrant Nerve Invasion in Subchondral Bone in Lumbar Facet Joint Osteoarthritis. Journal of Orthopaedic Research, 2020, 38, 670-679.	2.3	46

#	Article	IF	CITATIONS
19	Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis. Experimental Biology and Medicine, 2020, 245, 54-65.	2.4	86
20	Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury. Neuroscience Letters, 2020, 739, 135399.	2.1	41
21	Characterization of the Subchondral Bone and Pain Behavior Changes in a Novel Bipedal Standing Mouse Model of Facet Joint Osteoarthritis. BioMed Research International, 2020, 2020, 1-11.	1.9	5
22	3D Digital Anatomic Angioarchitecture of the Rat Spinal Cord: A Synchrotron Radiation Micro-CT Study. Frontiers in Neuroanatomy, 2020, 14, 41.	1.7	7
23	Association of Sedentary Behavior With Anxiety, Depression, and Suicide Ideation in College Students. Frontiers in Psychiatry, 2020, 11, 566098.	2.6	29
24	Extracellular Vesicles Derived from Epidural Fat-Mesenchymal Stem Cells Attenuate NLRP3 Inflammasome Activation and Improve Functional Recovery After Spinal Cord Injury. Neurochemical Research, 2020, 45, 760-771.	3.3	33
25	LncGBP9/miR-34a axis drives macrophages toward a phenotype conducive for spinal cord injury repair via STAT1/STAT6 and SOCS3. Journal of Neuroinflammation, 2020, 17, 134.	7.2	54
26	SRμCT Reveals 3D Microstructural Alterations of the Vascular and Neuronal Network in a Rat Model of Chronic Compressive Thoracic Spinal Cord Injury. , 2020, 11, 603.		11
27	3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging. Journal of Synchrotron Radiation, 2019, 26, 1742-1750.	2.4	7
28	Synchrotron radiation micro-tomography for high-resolution neurovascular network morphology investigation. Journal of Synchrotron Radiation, 2019, 26, 607-618.	2.4	9
29	UTX/KDM6A Deletion Promotes Recovery of Spinal Cord Injury by Epigenetically Regulating Vascular Regeneration. Molecular Therapy, 2019, 27, 2134-2146.	8.2	50
30	Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. Journal of Clinical Investigation, 2019, 129, 1076-1093.	8.2	239
31	Silencing of IncRNA PKIA-AS1 Attenuates Spinal Nerve Ligation-Induced Neuropathic Pain Through Epigenetic Downregulation of CDK6 Expression. Frontiers in Cellular Neuroscience, 2019, 13, 50.	3.7	31
32	Non-destructive 3D Microtomography of Cerebral Angioarchitecture Changes Following Ischemic Stroke in Rats Using Synchrotron Radiation. Frontiers in Neuroanatomy, 2019, 13, 5.	1.7	13
33	Unilateral Osteotomy of Lumbar Facet Joint Induces a Mouse Model of Lumbar Facet Joint Osteoarthritis. Spine, 2019, 44, E930-E938.	2.0	7
34	Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nature Communications, 2019, 10, 5643.	12.8	72
35	Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. Journal of Clinical Investigation, 2019, 129, 2578-2594.	8.2	102
36	Synchrotron Radiation Imaging Reveals the Role of Estrogen in Promoting Angiogenesis After Acute Spinal Cord Injury in Rats. Spine, 2018, 43, 1241-1249.	2.0	18

#	Article	IF	CITATIONS
37	Morphometric Analysis of Rat Spinal Cord Angioarchitecture by Phase Contrast Radiography. Spine, 2018, 43, E504-E511.	2.0	12
38	Three-dimensional visualization and pathologic characteristics of cartilage and subchondral bone changes in the lumbar facet joint of an ovariectomized mouse model. Spine Journal, 2018, 18, 663-673.	1.3	11
39	Three-dimensional characterization of the microstructure in rabbit patella–patellar tendon interface using propagation phase-contrast synchrotron radiation microtomography. Journal of Synchrotron Radiation, 2018, 25, 1833-1840.	2.4	12
40	Ciliary parathyroid hormone signaling activates transforming growth factor-β to maintain intervertebral disc homeostasis during aging. Bone Research, 2018, 6, 21.	11.4	59
41	3D characterization of morphological changes in the intervertebral disc and endplate during aging: A propagation phase contrast synchrotron micro-tomography study. Scientific Reports, 2017, 7, 43094.	3.3	19
42	Nondestructive imaging of the internal microstructure of vessels and nerve fibers in rat spinal cord using phase-contrast synchrotron radiation microtomography. Journal of Synchrotron Radiation, 2017, 24, 482-489.	2.4	15
43	Comparison of Synchrotron Radiation-based Propagation Phase Contrast Imaging and Conventional Micro-computed Tomography for Assessing Intervertebral Discs and Endplates in a Murine Model. Spine, 2017, 42, E883-E889.	2.0	15
44	Osteopontin, Bone Morphogenetic Protein-4, and Vitamin D Receptor Gene Polymorphisms in the Susceptibility and Clinical Severity of Spinal Tuberculosis. Cellular Physiology and Biochemistry, 2017, 41, 1881-1893.	1.6	9
45	Interleukin-6, tumor necrosis factor-alpha and receptor activator of nuclear factor kappa ligand are elevated in hypertrophic gastric mucosa of pachydermoperiostosis. Scientific Reports, 2017, 7, 9686.	3.3	4
46	Genetic factors of cervical spondylotic myelopathy-a systemic review. Journal of Clinical Neuroscience, 2017, 44, 89-94.	1.5	10
47	Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis, Inflammation, and Promotes Angiogenesis after Spinal Cord Injury in Rats. Journal of Neurotrauma, 2017, 34, 3388-3396.	3.4	200
48	Three Dimensional Quantification of Microarchitecture and Vessel Regeneration by Synchrotron Radiation Microcomputed Tomography in a Rat Model of Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1187-1199.	3.4	30
49	Synchrotron radiation micro-CT as a novel tool to evaluate the effect of agomir-210 in a rat spinal cord injury model. Brain Research, 2017, 1655, 55-65.	2.2	18
50	The 3D characteristics of post-traumatic syringomyelia in a rat model: a propagation-based synchrotron radiation microtomography study. Journal of Synchrotron Radiation, 2017, 24, 1218-1225.	2.4	7
51	MicroRNA-336 directly targets Sox-2 in osteosarcoma to inhibit tumorigenesis. Molecular Medicine Reports, 2017, 15, 4217-4224.	2.4	3
52	Tetramethylpyrazine Facilitates Functional Recovery after Spinal Cord Injury by Inhibiting MMP2, MMP9, and Vascular Endothelial Cell Apoptosis. Current Neurovascular Research, 2017, 14, 110-116.	1.1	19
53	The Angiogenic Effect of microRNA-21 Targeting TIMP3 through the Regulation of MMP2 and MMP9. PLoS ONE, 2016, 11, e0149537.	2.5	64
54	Micro-CT as a Tool to Investigate the Efficacy of Tetramethylpyrazine in a Rat Spinal Cord Injury Model. Spine, 2016, 41, 1272-1278.	2.0	16

#	Article	IF	CITATIONS
55	Visualization of mouse spinal cord intramedullary arteries using phase- and attenuation-contrast tomographic imaging. Journal of Synchrotron Radiation, 2016, 23, 966-974.	2.4	6
56	Tetramethylpyrazine enhances functional recovery after contusion spinal cord injury by modulation of MicroRNA-21, FasL, PDCD4 and PTEN expression. Brain Research, 2016, 1648, 35-45.	2.2	29
57	3D visualization of the lumbar facet joint after degeneration using propagation phase contrast micro-tomography. Scientific Reports, 2016, 6, 21838.	3.3	12
58	360-degree cervical spinal arthrodesis for treatment of pediatric cervical spinal tuberculosis with kyphosis. BMC Musculoskeletal Disorders, 2016, 17, 175.	1.9	18
59	Three-dimensional imaging of microvasculature in the rat spinal cord following injury. Scientific Reports, 2015, 5, 12643.	3.3	58
60	Preparation and Characterization of a Novel Decellularized Fibrocartilage "Book―Scaffold for Use in Tissue Engineering. PLoS ONE, 2015, 10, e0144240.	2.5	17
61	Highâ€resolution threeâ€dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation microâ€CT. Medical Physics, 2014, 41, 101904.	3.0	35