Yulong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6996607/publications.pdf

Version: 2024-02-01

43 papers

1,071 citations

623734 14 h-index 32 g-index

44 all docs 44 docs citations

44 times ranked 1256 citing authors

#	Article	IF	CITATIONS
1	A magnetic protein biocompass. Nature Materials, 2016, 15, 217-226.	27.5	250
2	Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films. Nature Communications, 2016, 7, 10608.	12.8	164
3	<mml:math< p=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:n< p=""> lon-exchange synthesis of large single-crystal and highly two-dimensional electron. Physical Review B, 2015, 92</mml:n<></mml:mrow></mml:mrow></mml:math<>	nsub> <mr< td=""><td>nl:mi>Li</td></mr<>	nl:mi>Li
4	An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material. Nano Letters, 2020, 20, 3828-3835.	9.1	79
5	Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition. Scientific Reports, 2018, 8, 4039.	3.3	47
6	A Hierarchical Mesoporous Insulation Ceramic. Nano Letters, 2020, 20, 1110-1116.	9.1	38
7	Printable Copper Sensor Electronics for High Temperature. ACS Applied Electronic Materials, 2020, 2, 1867-1873.	4.3	37
8	Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters. Chinese Physics Letters, 2017, 34, 077404.	3.3	30
9	Flexible Lead-Free X-ray Detector from Metal–Organic Frameworks. Nano Letters, 2021, 21, 6983-6989.	9.1	24
10	Solution-shearing of dielectric polymer with high thermal conductivity and electric insulation. Science Advances, 2021, 7, eabi7410.	10.3	24
11	Multifunctional Prussian blue analogue magnets: Emerging opportunities. Applied Materials Today, 2021, 22, 100886.	4.3	22
12	Wearable Aramid–Ceramic Aerogel Composite for Harsh Environment. Advanced Engineering Materials, 2021, 23, 2001169.	3.5	20
13	Reflective Paint Consisting of Mesoporous Silica Aerogel and Titania Nanoparticles for Thermal Management. ACS Applied Nano Materials, 2021, 4, 6357-6363.	5.0	17
14	Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization. Chinese Physics B, 2016, 25, 077404.	1.4	14
15	The upper critical field and its anisotropy in (Li _{1â^'<i>x</i>} Se. Journal of Physics Condensed Matter, 2017, 29, 025701.	1.8	14
16	Copper Nanoplates for Printing Flexible High-Temperature Conductors. ACS Applied Nano Materials, 2022, 5, 4028-4037.	5.0	13
17	Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability. Chemical Communications, 2020, 56, 2332-2335.	4.1	12
18	High temperature ceramic thermal insulation material. Nano Research, 2022, 15, 6662-6669.	10.4	12

#	Article	IF	CITATIONS
19	Observation of Ising spin-nematic order and its close relationship to the superconductivity in FeSe single crystals. Physical Review B, 2016, 94, .	3.2	11
20	All-Printed Conformal High-Temperature Electronics on Flexible Ceramics. ACS Applied Electronic Materials, 2020, 2, 556-562.	4.3	11
21	Eutectic crystallized FePd nanoparticles for liquid metal magnet. Chemical Communications, 2020, 56, 6555-6558.	4.1	11
22	Proton switching molecular magnetoelectricity. Nature Communications, 2021, 12, 4602.	12.8	10
23	Anisotropy of flux pinning properties in superconducting (Li,Fe)OHFeSe thin films. Superconductor Science and Technology, 2020, 33, 114009.	3.5	10
24	Doping Mn into (Li $\{$]_{1-x}{mathrm{Fe}}_{x})\$OHFe\${}_{1-y}\$Se superconducting crystals via ion-exchange and ion-release/introduction syntheses. Chinese Physics B, 2017, 26, 057402.	1.4	8
25	A macromolecular assembly directed ceramic aerogel monolith material. Journal of Materials Chemistry C, 2020, 8, 10319-10324.	5.5	7
26	Cu-based metal–organic frameworks for highly sensitive X-ray detectors. Chemical Communications, 2021, 57, 8612-8615.	4.1	7
27	Effect of Mn substitution on superconductivity in iron selenide (Li, Fe)OHFeSe single crystals. Chinese Physics B, 2018, 27, 077405.	1.4	6
28	Cross-Linking and Charging Molecular Magnetoelectronics. Nano Letters, 2021, 21, 4099-4105.	9.1	6
29	Laserâ€Induced Cooperative Transition in Molecular Electronic Crystal. Advanced Materials, 2021, 33, e2103000.	21.0	6
30	Alkali-Metal-Intercalated Aromatic Hydrocarbon Conductors. ACS Applied Nano Materials, 2019, 2, 1140-1145.	5.0	5
31	Hierarchical Structural Engineering of Ultrahigh-Molecular-Weight Polyethylene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50024-50032.	8.0	5
32	Emerging Magnetic Interactions in van der Waals Heterostructures. Nano Letters, 2020, 20, 7852-7859.	9.1	5
33	Two-Dimensional Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Conductive III & Conducti	8.0	5
34	Emerged Metallicity in Molecular Ferromagnetic Wires. Nano Letters, 2021, 21, 9746-9753.	9.1	5
35	Lithiating magneto-ionics in a rechargeable battery. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	5
36	Printing Air-Stable High-Tc Molecular Magnet with Tunable Magnetic Interaction. Nano Letters, 2022, 22, 545-553.	9.1	4

3

YULONG HUANG

#	Article	IF	CITATIONS
37	Electron transfer induced magnetic ordering of metal-cyanide magnets. Materials Advances, 2020, 1, 1061-1065.	5.4	3
38	Printed copper-nanoplate conductor for electro-magnetic interference. Nanotechnology, 2022, 33, 115601.	2.6	2
39	Correlation at two-dimensional charge-transfer FeSe interface. Chemical Communications, 2019, 55, 12643-12646.	4.1	1
40	Molecular conducting magnetic heterostructures. Journal of Materials Chemistry C, 2020, 8, 2228-2231.	5.5	1
41	Observation of a Ubiquitous (π, π)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe2–x Ni x As2 Single Crystals. Chinese Physics Letters, 2021, 38, 097401.	3.3	1
42	Laserâ€Induced Cooperative Transition in Molecular Electronic Crystal (Adv. Mater. 39/2021). Advanced Materials, 2021, 33, .	21.0	0
43	Switching charge states in quasi-2D molecular conductors. , 0, , .		0