Takashi Shinohara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6995457/publications.pdf

Version: 2024-02-01

90 papers 7,624 citations

57758 44 h-index 51608 86 g-index

92 all docs 92 docs citations 92 times ranked 4318 citing authors

#	Article	IF	CITATIONS
1	Regeneration of spermatogenesis by mouse germ cell transplantation into allogeneic and xenogeneic testis primordia or organoids. Stem Cell Reports, 2022, 17, 924-935.	4.8	8
2	Functional primordial germ cell–like cells from pluripotent stem cells in rats. Science, 2022, 376, 176-179.	12.6	28
3	Adeno-associated-virus-mediated gene delivery to ovaries restores fertility in congenital infertile mice. Cell Reports Medicine, 2022, 3, 100606.	6.5	6
4	OGG1 protects mouse spermatogonial stem cells from reactive oxygen species in cultureâ€. Biology of Reproduction, 2021, 104, 706-716.	2.7	6
5	An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes and Development, 2021, 35, 250-260.	5.9	19
6	Spermatogonial stem cell transplantation into nonablated mouse recipient testes. Stem Cell Reports, 2021, 16, 1832-1844.	4.8	17
7	Rubicon prevents autophagic degradation of GATA4 to promote Sertoli cell function. PLoS Genetics, 2021, 17, e1009688.	3.5	13
8	Cdc42 is required for male germline niche development in mice. Cell Reports, 2021, 36, 109550.	6.4	10
9	Genomic stability of mouse spermatogonial stem cells in vitro. Scientific Reports, 2021, 11, 24199.	3.3	O
10	Expression and functional analyses of ephrin type-A receptor 2 in mouse spermatogonial stem cellsâ€. Biology of Reproduction, 2020, 102, 220-232.	2.7	6
11	Transgenesis and Genome Editing of Mouse Spermatogonial Stem Cells by Lentivirus Pseudotyped with Sendai Virus F Protein. Stem Cell Reports, 2020, 14, 447-461.	4.8	6
12	Autologous transplantation of spermatogonial stem cells restores fertility in congenitally infertile mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7837-7844.	7.1	22
13	CD2 is a surface marker for mouse and rat spermatogonial stem cells. Journal of Reproduction and Development, 2020, 66, 341-349.	1.4	2
14	Aging of spermatogonial stem cells by Jnk-mediated glycolysis activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16404-16409.	7.1	39
15	Sendai virus-mediated transduction of mammalian spermatogonial stem cellsâ€. Biology of Reproduction, 2019, 100, 523-534.	2.7	3
16	ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Science Alliance, 2019, 2, e201900374.	2.8	21
17	InÂVivo Genetic Manipulation of Spermatogonial Stem Cells and Their Microenvironment by Adeno-Associated Viruses. Stem Cell Reports, 2018, 10, 1551-1564.	4.8	28
18	Culture and transplantation of spermatogonial stem cells. Stem Cell Research, 2018, 29, 46-55.	0.7	52

#	Article	IF	Citations
19	Reversible inhibition of the blood-testis barrier protein improves stem cell homing in mouse testes. Journal of Reproduction and Development, 2018, 64, 511-522.	1.4	7
20	Adeno-associated virus-mediated delivery of genes to mouse spermatogonial stem cells ^{<xref ref-type="fn" rid="afn1">â€</xref>} . Biology of Reproduction, 2017, 96, 221-231.	2.7	12
21	Transfer of a Mouse Artificial Chromosome into Spermatogonial Stem Cells Generates Transchromosomic Mice. Stem Cell Reports, 2017, 9, 1180-1191.	4.8	15
22	Nonrandom contribution of left and right testes to germline transmission from mouse spermatogonial stem cellsâ€. Biology of Reproduction, 2017, 97, 902-910.	2.7	0
23	Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes and Development, 2016, 30, 2637-2648.	5.9	66
24	Fertility of Male Germline Stem Cells Following Spermatogonial Transplantation in Infertile Mouse Models1. Biology of Reproduction, 2016, 94, 112.	2.7	45
25	Nonrandom Germline Transmission of Mouse Spermatogonial Stem Cells. Developmental Cell, 2016, 38, 248-261.	7.0	23
26	The Luteinizing Hormone-Testosterone Pathway Regulates Mouse Spermatogonial Stem Cell Self-Renewal by Suppressing WNT5A Expression in Sertoli Cells. Stem Cell Reports, 2016, 7, 279-291.	4.8	53
27	Enrichment of Mouse Spermatogonial Stem Cells by the Stem Cell Dye CDy11. Biology of Reproduction, 2016, 94, 13.	2.7	16
28	Pluripotent cell derivation from male germline cells by suppression of $\langle i \rangle Dmrt1 \langle i \rangle$ and $\langle i \rangle Trp53 \langle i \rangle$. Journal of Reproduction and Development, 2015, 61, 473-484.	1.4	10
29	Functional Differences between GDNF-Dependent and FGF2-Dependent Mouse Spermatogonial Stem Cell Self-Renewal. Stem Cell Reports, 2015, 4, 489-502.	4.8	142
30	ROS-Generating Oxidase Nox3 Regulates the Self-Renewal of Mouse Spermatogonial Stem Cells1. Biology of Reproduction, 2015, 92, 147.	2.7	40
31	The Trp53-Trp53inp1-Tnfrsf10b Pathway Regulates the Radiation Response of Mouse Spermatogonial Stem Cells. Stem Cell Reports, 2014, 3, 676-689.	4.8	20
32	Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8826-8831.	7.1	69
33	Improved Serum- and Feeder-Free Culture of Mouse Germline Stem Cells1. Biology of Reproduction, 2014, 91, 88.	2.7	69
34	Spermatogonial Stem Cell Self-Renewal and Development. Annual Review of Cell and Developmental Biology, 2013, 29, 163-187.	9.4	263
35	Enrichment of Mouse Spermatogonial Stem Cells Based on Aldehyde Dehydrogenase Activity1. Biology of Reproduction, 2013, 89, 140.	2.7	16
36	ROS Are Required for Mouse Spermatogonial Stem Cell Self-Renewal. Cell Stem Cell, 2013, 12, 774-786.	11.1	193

3

#	Article	IF	CITATIONS
37	Regulation of pluripotency in male germline stem cells by Dmrt1. Genes and Development, 2013, 27, 1949-1958.	5.9	54
38	Hybridization of Testis-Derived Stem Cells with Somatic Cells and Embryonic Stem Cells in Mice1. Biology of Reproduction, 2012, 86, 178.	2.7	3
39	In Vitro Transformation of Mouse Testis Cells by Oncogene Transfection1. Biology of Reproduction, 2012, 86, 148, 1-11.	2.7	13
40	FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of <i>Etv5</i> and <i>Bcl6b</i> through MAP2K1 activation. Development (Cambridge), 2012, 139, 1734-1743.	2.5	178
41	Reconstitution of Mouse Spermatogonial Stem Cell Niches in Culture. Cell Stem Cell, 2012, 11, 567-578.	11.1	104
42	Enrichment of Mouse Spermatogonial Stem Cells by Melanoma Cell Adhesion Molecule Expression1. Biology of Reproduction, 2012, 87, 139.	2.7	51
43	Serum- and Feeder-Free Culture of Mouse Germline Stem Cells1. Biology of Reproduction, 2011, 84, 97-105.	2.7	115
44	Rac Mediates Mouse Spermatogonial Stem Cell Homing to Germline Niches by Regulating Transmigration through the Blood-Testis Barrier. Cell Stem Cell, 2011, 9, 463-475.	11.1	58
45	Dynamic Changes in EPCAM Expression during Spermatogonial Stem Cell Differentiation in the Mouse Testis. PLoS ONE, 2011, 6, e23663.	2.5	48
46	Unstable Side Population Phenotype of Mouse Spermatogonial Stem Cells In Vitro. Journal of Reproduction and Development, 2011, 57, 288-295.	1.4	16
47	Homologous Recombination in Rat Germline Stem Cells1. Biology of Reproduction, 2011, 85, 208-217.	2.7	28
48	Epigenetic modifications and self-renewal regulation of mouse germline stem cells. Cell Research, 2011, 21, 1164-1171.	12.0	24
49	Genetic Influences in Mouse Spermatogonial Stem Cell Self-Renewal. Journal of Reproduction and Development, 2010, 56, 145-153.	1.4	16
50	Generation of genetically modified animals using spermatogonial stem cells. Development Growth and Differentiation, 2010, 52, 303-310.	1.5	23
51	Transmission distortion by loss of p21 or p27 cyclin-dependent kinase inhibitors following competitive spermatogonial transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6210-6215.	7.1	35
52	Germline Modification Using Mouse Spermatogonial Stem Cells. Methods in Enzymology, 2010, 477, 17-36.	1.0	26
53	Phenotypic Plasticity of Mouse Spermatogonial Stem Cells. PLoS ONE, 2009, 4, e7909.	2.5	85
54	Abnormal DNA Methyltransferase Expression in Mouse Germline Stem Cells Results in Spermatogenic Defects 1. Biology of Reproduction, 2009, 81, 155-164.	2.7	72

#	Article	IF	CITATIONS
55	Heritable Imprinting Defect Caused by Epigenetic Abnormalities in Mouse Spermatogonial Stem Cells1. Biology of Reproduction, 2009, 80, 518-527.	2.7	41
56	Genetic Reconstruction of Mouse Spermatogonial Stem Cell Self-Renewal In Vitro by Ras-Cyclin D2 Activation. Cell Stem Cell, 2009, 5, 76-86.	11.1	126
57	Homing of Mouse Spermatogonial Stem Cells to Germline Niche Depends on \hat{l}^21 -Integrin. Cell Stem Cell, 2008, 3, 533-542.	11.1	170
58	Long-Term Culture of Male Germline Stem Cells From Hamster Testes 1. Biology of Reproduction, 2008, 78, 611-617.	2.7	165
59	Pluripotency of a Single Spermatogonial Stem Cell in Mice1. Biology of Reproduction, 2008, 78, 681-687.	2.7	170
60	Production of Transgenic Rats via Lentiviral Transduction and Xenogeneic Transplantation of Spermatogonial Stem Cells 1. Biology of Reproduction, 2008, 79, 1121-1128.	2.7	36
61	Akt mediates self-renewal division of mouse spermatogonial stem cells. Development (Cambridge), 2007, 134, 1853-1859.	2.5	234
62	Adenovirus-mediated gene delivery into mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2596-2601.	7.1	58
63	Leukemia Inhibitory Factor Enhances Formation of Germ Cell Colonies in Neonatal Mouse Testis Culture1. Biology of Reproduction, 2007, 76, 55-62.	2.7	69
64	Production of knockout mice by gene targeting in multipotent germline stem cells. Developmental Biology, 2007, 312, 344-352.	2.0	40
65	Culture and Genetic Modification of Mouse Germline Stem Cells. Annals of the New York Academy of Sciences, 2007, 1120, 59-71.	3.8	21
66	Anchorage-Independent Growth of Mouse Male Germline Stem Cells In Vitro1. Biology of Reproduction, 2006, 74, 522-529.	2.7	44
67	Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Developmental Biology, 2006, 6, 34.	2.1	112
68	The germ of pluripotency. Nature Biotechnology, 2006, 24, 663-664.	17.5	31
69	Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8018-8023.	7.1	151
70	Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13624-13628.	7.1	72
71	Clonal Origin of Germ Cell Colonies after Spermatogonial Transplantation in Mice1. Biology of Reproduction, 2006, 75, 68-74.	2.7	99
72	Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development (Cambridge), 2005, 132, 117-122.	2.5	119

#	Article	IF	CITATIONS
73	Genetic Selection of Mouse Male Germline Stem Cells In Vitro: Offspring from Single Stem Cells1. Biology of Reproduction, 2005, 72, 236-240.	2.7	100
74	Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development (Cambridge), 2005, 132, 4155-4163.	2.5	210
75	Long-Term Culture of Mouse Male Germline Stem Cells Under Serum-or Feeder-Free Conditions 1. Biology of Reproduction, 2005, 72, 985-991.	2.7	309
76	CD9 Is a Surface Marker on Mouse and Rat Male Germline Stem Cells1. Biology of Reproduction, 2004, 70, 70-75.	2.7	256
77	Transgenic Mice Produced by Retroviral Transduction of Male Germ Line Stem Cells In Vivo1. Biology of Reproduction, 2004, 71, 1202-1207.	2.7	81
78	Regulation of Mouse Spermatogonial Stem Cell Self-Renewing Division by the Pituitary Gland 1. Biology of Reproduction, 2004, 70, 1731-1737.	2.7	22
79	Generation of Pluripotent Stem Cells from Neonatal Mouse Testis. Cell, 2004, 119, 1001-1012.	28.9	766
80	Long-Term Proliferation in Culture and Germline Transmission of Mouse Male Germline Stem Cells1. Biology of Reproduction, 2003, 69, 612-616.	2.7	922
81	Allogeneic Offspring Produced by Male Germ Line Stem Cell Transplantation into Infertile Mouse Testis1. Biology of Reproduction, 2003, 68, 167-173.	2.7	109
82	Restoration of Spermatogenesis in Infertile Mice by Sertoli Cell Transplantation 1. Biology of Reproduction, 2003, 68, 1064-1071.	2.7	127
83	Functional Assessment of Self-Renewal Activity of Male Germline Stem Cells Following Cytotoxic Damage and Serial Transplantation1. Biology of Reproduction, 2003, 68, 1801-1807.	2.7	93
84	Germ Line Stem Cell Competition in Postnatal Mouse Testes 1. Biology of Reproduction, 2002, 66, 1491-1497.	2.7	73
85	Adenovirus-mediated gene delivery and in vitro microinsemination produce offspring from infertile male mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1383-1388.	7.1	70
86	Functional Analysis of Stem Cells in the Adult Rat Testis 1. Biology of Reproduction, 2002, 66, 944-949.	2.7	79
87	Enrichment and transplantation of spermatogonial stem cells. Journal of Developmental and Physical Disabilities, 2000, 23, 89-91.	3.6	41
88	Functional Analysis of Spermatogonial Stem Cells in Steel and Cryptorchid Infertile Mouse Models. Developmental Biology, 2000, 220, 401-411.	2.0	159
89	Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Letters, 2000, 475, 7-10.	2.8	121
90	Epidermal growth factor can replace thymic mesenchyme in induction of embryonic thymus morphogenesisin vitro. European Journal of Immunology, 1996, 26, 747-752.	2.9	34