
Kazuyuki Akasaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6994601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational Properties Relevant to the Amyloidogenicity of β ₂ -Microglobulin Analyzed Using Pressure- and Salt-Dependent Chemical Shift Data. Journal of Physical Chemistry B, 2019, 123, 836-844.	2.6	10
2	Perspective: Structural fluctuation of protein and Anfinsen's thermodynamic hypothesis. Journal of Chemical Physics, 2018, 148, 020901.	3.0	17
3	Protein Studies by High-Pressure NMR. , 2018, , 3-36.		6
4	Direct High-Pressure NMR Observation of Molecular Processes of Spore Inactivation by a Sequential Pressure-Temperature Perturbation. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 113-122.	0.0	0
5	Direct high-pressure NMR observation of dipicolinic acid leaking from bacterial spore: A crucial step for thermal inactivation. Biophysical Chemistry, 2017, 231, 10-14.	2.8	11
6	Conformational fluctuations in a green fluorescent protein-like Akane family protein: a high-pressure fluorescence study at 0.1–700â€MPa. High Pressure Research, 2017, 37, 224-232.	1.2	2
7	High Pressure NMR Spectroscopy. Sub-Cellular Biochemistry, 2015, 72, 707-721.	2.4	6
8	Structural fluctuation of proteins induced by thermodynamic perturbation. Journal of Chemical Physics, 2015, 142, 044110.	3.0	21
9	Pressure-assisted dissociation and degradation of "proteinase K-resistant―fibrils prepared by seeding with scrapie-infected hamster prion protein. Prion, 2014, 8, 314-318.	1.8	6
10	Pressure and protein dynamism. High Pressure Research, 2014, 34, 222-235.	1.2	11
11	3P019 A relationships among compression of the cavity of c-MybR2, conformational changes and fluctuation under high-pressure using MD simulation(01A. Protein: Structure,Poster,The 52nd Annual) Tj ETQq1 1	007184314	ł ngBT ∕Overi
12	Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 71, 35-58.	7.5	52
13	Cavity hydration as a gateway to unfolding: An NMR study of hen lysozyme at high pressure and low temperature. Biophysical Chemistry, 2011, 156, 24-30.	2.8	42
14	The pressure-temperature phase diagram of hen lysozyme at low pH. Biophysics (Nagoya-shi, Japan), 2009, 5, 1-9.	0.4	25
15	3P047 Activation Volume and Activation Compressibility for Dissociation of Young Amyloid Protofibrils(Proteins-stability, folding, and other physicochemical properties,Poster Presentations). Seibutsu Butsuri, 2007, 47, S214.	0.1	Ο
16	Amyloid Protofibril is Highly Voluminous and Compressible. Biochemistry, 2007, 46, 10444-10450.	2.5	43
17	Probing Conformational Fluctuation of Proteins by Pressure Perturbation. Chemical Reviews, 2006, 106, 1814-1835.	47.7	268
18	S1c2-2 Low-Lying Excited States of Proteins Associated with Cavity Hydration(S1-c2: "Protein Hydration) Tj ETQq0	0 0 0 rgBT 0.1	/Overlock 1 0

18

2

Seibutsu Butsuri, 2006, 46, S114.

ΚΑΖUYUKI ΑΚΑSAKA

#	Article	IF	CITATIONS
19	2P123 The disulfide-bond dependence of the morphology of amyloid-like fibers from hen lysozyme(31.) Tj ETQq1	1 0.78431 0.1	.4 rgBT /Ove 0
20	Seibutsu Butsuri, 2006, 46, S326. 1P580 Dynamics of cavity in c-Myb R2 sub-domain studied by high-pressure MD simulation(27. Molecular) Tj ETQo 2006, 46, S291.	q0 0 0 rgB 0.1	T /Overlock 0
21	Highly Fluctuating Protein Structures Revealed by Variable-Pressure Nuclear Magnetic Resonance. Biochemistry, 2003, 42, 10875-10885.	2.5	75
22	Exploring the entire conformational space of proteins by high-pressure NMR. Pure and Applied Chemistry, 2003, 75, 927-936.	1.9	42
23	High Pressure NMR Expands the Protein Structure World Seibutsu Butsuri, 2002, 42, 206-211.	0.1	1
24	Low-Lying Excited States of Proteins Revealed from Nonlinear Pressure Shifts in 1H and 15N NMR. Biochemistry, 2001, 40, 8665-8671.	2.5	86
25	Response of native and denatured hen lysozyme to high pressure studied by 15 N/1 H NMR spectroscopy. FEBS Journal, 2001, 268, 1782-1793.	0.2	57
26	Filling a cavity dramatically increases pressure stability of the c-Myb R2 subdomain. Proteins: Structure, Function and Bioinformatics, 2001, 45, 96-101.	2.6	39
27	Pressure-dependent changes in the structure of the melittin alpha-helix determined by NMR. Journal of Biomolecular NMR, 2001, 19, 115-124.	2.8	29
28	Rapid internal dynamics of BPTI is insensitive to pressure. FEBS Letters, 2000, 470, 11-14.	2.8	21
29	High Pressure NMR Reveals Active-Site Hinge Motion of Folate-Bound Escherichia coli Dihydrofolate Reductase. Biochemistry, 2000, 39, 12789-12795.	2.5	79
30	¹⁵ N and ¹ H NMR study of histidine containing protein (hpr) from <i>staphylococcus carnosus</i> at high pressure. Protein Science, 2000, 9, 693-703.	7.6	42
31	Structure of an analog of fusion peptide from hemagglutinin. Protein Science, 2000, 9, 786-798.	7.6	51
32	Pressure response of protein backbone structure. Pressureâ€induced amide ¹⁵ N chemical shifts in BPTI. Protein Science, 1999, 8, 1946-1953.	7.6	98
33	The compact and expanded denatured conformations of apomyoglobin in the methanolâ€water solvent. Protein Science, 1999, 8, 873-882.	7.6	52
34	High pressure NMR study of a small protein, gurmarin. Journal of Biomolecular NMR, 1998, 12, 535-541.	2.8	29
35	The methanol-induced transition and the expanded helical conformation in hen lysozyme. Protein Science, 1998, 7, 681-688.	7.6	56
36	Effect of Pressure on Individual Hydrogen Bonds in Proteins. Basic Pancreatic Trypsin Inhibitorâ€. Biochemistry, 1998, 37, 1167-1173.	2.5	113

Καζυγυκι Ακαδακά

#	Article	IF	CITATIONS
37	Microwave temperature-jump nuclear magnetic resonance system for aqueous solutions. Review of Scientific Instruments, 1998, 69, 3365-3369.	1.3	12
38	Ureaâ€induced conformational changes in cold―and heatâ€denatured states of a protein, <i>Streptomyces</i> subtilisin inhibitor. Protein Science, 1997, 6, 2242-2249.	7.6	12
39	Dynamics of the three methionyl side chains of <i>Streptomyces</i> subtilisin inhibitor. Deuterium NMR studies in solution and in the solid state. Protein Science, 1996, 5, 127-139.	7.6	39
40	Stateâ€correlated twoâ€dimensional NMR spectroscopy: Separation of local dipolar fields of protons in nematic phase of 4′â€methoxybenzylideneâ€4â€acetoxyaniline. Journal of Chemical Physics, 1996, 105, 4504-4510.	3.0	20
41	Three-dimensional structure of gurmarin, a sweet taste-suppressing polypeptide. Journal of Biomolecular NMR, 1995, 5, 297-305.	2.8	40