Courtney G Montgomery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991955/publications.pdf

Version: 2024-02-01

57 papers

3,933 citations

236925 25 h-index 149698 56 g-index

58 all docs 58 docs citations

58 times ranked 7730 citing authors

#	Article	IF	Citations
1	Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 2021, 590, 290-299.	27.8	1,069
2	Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sj $ ilde{A}\P$ gren's syndrome. Nature Genetics, 2013, 45, 1284-1292.	21.4	427
3	PD-1 up-regulation on CD4 <code>⁺</code> T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF- \hat{l}^2 1 production. Science Translational Medicine, 2018, 10, .	12.4	225
4	Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genetics, 2019, 15, e1008500.	3.5	203
5	Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as Susceptibility Loci for Systemic Lupus Erythematosus in a Large-Scale Multiracial Replication Study. American Journal of Human Genetics, 2012, 90, 648-660.	6.2	161
6	Comparison of the American-European Consensus Group Sjögren's syndrome classification criteria to newly proposed American College of Rheumatology criteria in a large, carefully characterised sicca cohort. Annals of the Rheumatic Diseases, 2014, 73, 31-38.	0.9	161
7	X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and SjĶgren's Syndrome. Arthritis and Rheumatology, 2016, 68, 1290-1300.	5.6	114
8	Genome-Wide Association Study of African and European Americans Implicates Multiple Shared and Ethnic Specific Loci in Sarcoidosis Susceptibility. PLoS ONE, 2012, 7, e43907.	2.5	105
9	Identification of Immune-Relevant Factors Conferring Sarcoidosis Genetic Risk. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 727-736.	5.6	94
10	Genetic, Immunologic, and Environmental Basis of Sarcoidosis. Annals of the American Thoracic Society, 2017, 14, S429-S436.	3.2	87
11	The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Human Molecular Genetics, 2015, 24, 582-596.	2.9	74
12	Identification of a Systemic Lupus Erythematosus Susceptibility Locus at 11p13 between PDHX and CD44 in a Multiethnic Study. American Journal of Human Genetics, 2011, 88, 83-91.	6.2	72
13	Association of two independent functional risk haplotypes in <i>TNIP1</i> with systemic lupus erythematosus. Arthritis and Rheumatism, 2012, 64, 3695-3705.	6.7	69
14	High-Density Genetic Mapping Identifies New Susceptibility Variants in Sarcoidosis Phenotypes and Shows Genomic-driven Phenotypic Differences. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1008-1022.	5. 6	68
15	Genetics of Sjögren's syndrome in the genome-wide association era. Journal of Autoimmunity, 2012, 39, 57-63.	6.5	61
16	Identification of a Sj \tilde{A} ¶gren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genetics, 2017, 13, e1006820.	3.5	60
17	The genomics of autoimmune disease in the era of genome-wide association studies and beyond. Autoimmunity Reviews, 2012, 11, 267-275.	5.8	58
18	Enhancer histone-QTLs are enriched on autoimmune risk haplotypes and influence gene expression within chromatin networks. Nature Communications, 2018, 9, 2905.	12.8	56

#	Article	IF	Citations
19	Single-cell analysis of glandular T cell receptors in Sjögren's syndrome. JCI Insight, 2016, 1, .	5.0	54
20	Population sequencing data reveal a compendium of mutational processes in the human germ line. Science, 2021, 373, 1030-1035.	12.6	43
21	Association of <i>HLA</i> - <i>DRB1</i> with Sarcoidosis Susceptibility and Progression in African Americans. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 206-216.	2.9	42
22	Downregulation of E Protein Activity Augments an ILC2 Differentiation Program in the Thymus. Journal of Immunology, 2017, 198, 3149-3156.	0.8	39
23	Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease. Nature Communications, 2020, 11, 6417.	12.8	39
24	Admixture Fine-Mapping in African Americans Implicates XAF1 as a Possible Sarcoidosis Risk Gene. PLoS ONE, 2014, 9, e92646.	2.5	31
25	Inactivating Mutation in the Prostaglandin Transporter Gene, <i>SLCO2A1</i> , Associated with Familial Digital Clubbing, Colon Neoplasia, and NSAID Resistance. Cancer Prevention Research, 2014, 7, 805-812.	1.5	29
26	Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genomics, 2022, 2, 100084.	6.5	29
27	Minor salivary gland fibrosis in Sjögren's syndrome is elevated, associated with focus score and not solely a consequence of aging. Clinical and Experimental Rheumatology, 2018, 36 Suppl 112, 80-88.	0.8	26
28	Encore: Genetic Association Interaction Network Centrality Pipeline and Application to SLE Exome Data. Genetic Epidemiology, 2013, 37, 614-621.	1.3	25
29	Development and validation of a simple lupus severity index using ACR criteria for classification of SLE. Lupus Science and Medicine, 2016, 3, e000136.	2.7	25
30	Effect of Tobacco Smoking on The Clinical, Histopathological, and Serological Manifestations of Sjögren's Syndrome. PLoS ONE, 2017, 12, e0170249.	2.5	25
31	Performance of HLA allele prediction methods in African Americans for class II genes HLA-DRB1, â^'DQB1, and â€"DPB1. BMC Genetics, 2014, 15, 72.	2.7	24
32	Fatty infiltration of the minor salivary glands is a selective feature of aging but not Sjögren's syndrome. Autoimmunity, 2017, 50, 451-457.	2.6	23
33	Brief Report: Patients With Primary Sjögren's Syndrome Who Are Positive for Autoantibodies to Tripartite Motif–Containing Protein 38 Show Greater Disease Severity. Arthritis and Rheumatology, 2016, 68, 724-729.	5.6	22
34	Single Cell Transcriptomics Implicate Novel Monocyte and T Cell Immune Dysregulation in Sarcoidosis. Frontiers in Immunology, 2020, 11, 567342.	4.8	21
35	Genome-Wide Association Study of Ocular Sarcoidosis Confirms HLA Associations and Implicates Barrier Function and Autoimmunity in African Americans. Ocular Immunology and Inflammation, 2021, 29, 244-249.	1.8	21
36	Practical Barriers and Ethical Challenges in Genetic Data Sharing. International Journal of Environmental Research and Public Health, 2014, 11, 8383-8398.	2.6	20

#	Article	IF	CITATIONS
37	Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data. BMC Bioinformatics, 2015, 16, S10.	2.6	19
38	ARID3a gene profiles are strongly associated with human interferon alpha production. Journal of Autoimmunity, 2019, 96, 158-167.	6.5	19
39	Disease Activity in Systemic Lupus Erythematosus Correlates With Expression of the Transcription Factor ATâ€Rich–Interactive Domain 3A. Arthritis and Rheumatology, 2014, 66, 3404-3412.	5.6	18
40	Role of NOD2 Pathway Genes in Sarcoidosis Cases with Clinical Characteristics of Blau Syndrome. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1133-1135.	5.6	18
41	Fine mapping of chromosome 15q25 implicates <scp>ZNF</scp> 592 in neurosarcoidosis patients. Annals of Clinical and Translational Neurology, 2015, 2, 972-977.	3.7	17
42	Efficient Generalized Least Squares Method for Mixed Population and Family-based Samples in Genome-wide Association Studies. Genetic Epidemiology, 2014, 38, 430-438.	1.3	14
43	American Indians Have a Higher Risk of Sjögren's Syndrome and More Disease Activity Than European Americans and African Americans. Arthritis Care and Research, 2020, 72, 1049-1056.	3.4	14
44	Trans-Ethnic Mapping of BANK1 Identifies Two Independent SLE-Risk Linkage Groups Enriched for Co-Transcriptional Splicing Marks. International Journal of Molecular Sciences, 2018, 19, 2331.	4.1	12
45	Association of IFIH1 and pro-inflammatory mediators: Potential new clues in SLE-associated pathogenesis. PLoS ONE, 2017, 12, e0171193.	2.5	11
46	Recent advances in sarcoidosis genomics: epigenetics, gene expression, and gene by environment (G × E) interaction studies. Current Opinion in Pulmonary Medicine, 2020, 26, 544-553.	2.6	11
47	Antibodies to periodontogenic bacteria are associated with higher disease activity in lupus patients. Clinical and Experimental Rheumatology, 2019, 37, 106-111.	0.8	11
48	Systemic immune response to vimentin and granuloma formation in a model of pulmonary sarcoidosis. Journal of Translational Autoimmunity, 2022, 5, 100153.	4.0	11
49	Reproducibility of Ocular Surface Staining in the Assessment of Sjögren Syndrome–Related Keratoconjunctivitis Sicca: Implications on Disease Classification. ACR Open Rheumatology, 2019, 1, 292-302.	2.1	10
50	Extended methods for gene–environmentâ€wide interaction scans in studies of admixed individuals with varying degrees of relationships. Genetic Epidemiology, 2019, 43, 414-426.	1.3	10
51	Estimating Allele Frequencies. Methods in Molecular Biology, 2012, 850, 59-76.	0.9	9
52	Estimating Allele Frequencies. Methods in Molecular Biology, 2017, 1666, 61-81.	0.9	7
53	Robust, flexible, and scalable tests for Hardy–Weinberg equilibrium across diverse ancestries. Genetics, 2021, 218, .	2.9	6
54	dcVar: a method for identifying common variants that modulate differential correlation structures in gene expression data. Frontiers in Genetics, 2015, 6, 312.	2.3	5

#	Article	IF	CITATIONS
55	Novel HLA associations with outcomes of <i>Mycobacterium tuberculosis</i> exposure and sarcoidosis in individuals of African ancestry using nearestâ€neighbor feature selection. Genetic Epidemiology, 2022, 46, 463-474.	1.3	5
56	Genetics, Genomics, and Proteomics of Sjögren's Syndrome. , 2011, , 11-31.		2
57	Nearest-Neighbor Projected Distance Regression for Epistasis Detection in GWAS With Population Structure Correction. Frontiers in Genetics, 2020, 11 , 784 .	2.3	1