
Li Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/699186/publications.pdf Version: 2024-02-01

ΙιΤιανι

#	Article	IF	CITATIONS
1	Mutant combinations of <i>lycopene É›â€cyclase</i> and <i>βâ€carotene hydroxylase 2</i> homoeologs increased βâ€carotene accumulation in endosperm of tetraploid wheat (<i>Triticum turgidum</i> L.) grains. Plant Biotechnology Journal, 2022, 20, 564-576.	8.3	14
2	Mutational Analysis of a Wheat O-methyltransferase Involved in Flavonoid Metabolism. Plants, 2022, 11, 164.	3.5	2
3	A Myb transcription factor, <i>Pg</i> Myb308-like, enhances the level of shikimate, aromatic amino acids, and lignins, but represses the synthesis of flavonoids and hydrolyzable tannins, in pomegranate (<i>Punica granatum</i> L.). Horticulture Research, 2022, 9, .	6.3	11
4	Identification and Characterization of Two Regiospecific Tricetin UDP-Dependent Glycosyltransferases from Pomegranate (Punica granatum L.). Plants, 2022, 11, 810.	3.5	1
5	Flavonoids in <i>Cannabis sativa</i> : Biosynthesis, Bioactivities, and Biotechnology. ACS Omega, 2021, 6, 5119-5123.	3.5	63
6	Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12, 1944.	12.8	79
7	Metabolic engineering in woody plants: challenges, advances, and opportunities. ABIOTECH, 2021, 2, 299-313.	3.9	0
8	Methyl jasmonate elicits distinctive hydrolyzable tannin, flavonoid, and phyto-oxylipin responses in pomegranate (Punica granatum L.) leaves. Planta, 2021, 254, 89.	3.2	6
9	Assessing the Role of Carotenoid Cleavage Dioxygenase 4 Homoeologs in Carotenoid Accumulation and Plant Growth in Tetraploid Wheat. Frontiers in Nutrition, 2021, 8, 740286.	3.7	1
10	Image-Based, Organ-Level Plant Phenotyping for Wheat Improvement. Agronomy, 2020, 10, 1287.	3.0	9
11	Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 2020, 11, 1178.	12.8	204
12	Exploring the Phytochemical Landscape of the Early-Diverging Flowering Plant Amborella trichopoda Baill Molecules, 2019, 24, 3814.	3.8	8
13	Elucidating the role of shikimate dehydrogenase in controlling the production of anthocyanins and hydrolysable tannins in the outer peels of pomegranate. BMC Plant Biology, 2019, 19, 476.	3.6	16
14	Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyltransferase in pomegranate (Punica granatum L.). Horticulture Research, 2019, 6, 123.	6.3	43
15	Phylogenomic analysis of UDPâ€dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. Plant Journal, 2019, 100, 1273-1288.	5.7	75
16	Primary Metabolites, Anthocyanins, and Hydrolyzable Tannins in the Pomegranate Fruit. Frontiers in Plant Science, 2019, 10, 620.	3.6	76
17	Gene expression and metabolite profiling analyses of developing pomegranate fruit peel reveal interactions between anthocyanin and punicalagin production. Tree Genetics and Genomes, 2019, 15, 1.	1.6	12
18	PgUGT95B2 preferentially metabolizes flavones/flavonols and has evolved independently from flavone/flavonol UGTs identified in Arabidopsis thaliana. Phytochemistry, 2019, 157, 184-193.	2.9	24

Li Tian

#	Article	lF	CITATIONS
19	The biodiversity of different traits of pomegranate fruit peels from a broad collection of diverse cultivars. Scientia Horticulturae, 2019, 246, 842-848.	3.6	16
20	A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (<i>Punica granatum</i>). Natural Product Research, 2019, 33, 252-257.	1.8	34
21	Cloning and functional characterization of a p-coumaroyl quinate/shikimate 3′-hydroxylase from potato (Solanum tuberosum). Biochemical and Biophysical Research Communications, 2018, 496, 462-467.	2.1	16
22	Breeding Major Cereal Grains through the Lens of Nutrition Sensitivity. Molecular Plant, 2018, 11, 23-30.	8.3	55
23	Distinctive Patterns of Flavonoid Biosynthesis in Roots and Nodules of Datisca glomerata and Medicago spp. Revealed by Metabolomic and Gene Expression Profiles. Frontiers in Plant Science, 2018, 9, 1463.	3.6	31
24	A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 2018, 19, 84.	8.8	230
25	Characterization of a UGT84 Family Glycosyltransferase Provides New Insights into Substrate Binding and Reactivity of Galloylglucose Ester-Forming UGTs. Biochemistry, 2017, 56, 6389-6400.	2.5	12
26	CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Frontiers in Plant Science, 2017, 8, 1598.	3.6	150
27	Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum). Molecules, 2017, 22, 1606.	3.8	136
28	Endosperm Carotenoid Concentrations in Wheat are Better Correlated with PSY1 Transcript Levels than Enzyme Activities. Crop Science, 2016, 56, 3173-3184.	1.8	5
29	Distinct expression and function of carotenoid metabolic genes and homoeologs in developing wheat grains. BMC Plant Biology, 2016, 16, 155.	3.6	29
30	Glucose ester enabled acylation in plant specialized metabolism. Phytochemistry Reviews, 2016, 15, 1057-1074.	6.5	14
31	Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum). PLoS ONE, 2016, 11, e0156319.	2.5	61
32	Using Hairy Roots for Production of Valuable Plant Secondary Metabolites. Advances in Biochemical Engineering/Biotechnology, 2015, 149, 275-324.	1.1	38
33	Establishment of pomegranate (Punica granatum) hairy root cultures for genetic interrogation of the hydrolyzable tannin biosynthetic pathway. Planta, 2012, 236, 931-941.	3.2	32
34	Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains. Plant Molecular Biology, 2012, 80, 631-646.	3.9	47
35	The multiplicity of hairy root cultures: Prolific possibilities. Plant Science, 2011, 180, 439-446.	3.6	189
36	Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker DiscoveryF. Journal of Integrative Plant Biology, 2011, 53, 800-813.	8.5	61

Li Tian

#	Article	IF	CITATIONS
37	Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.). Planta, 2011, 234, 737-748.	3.2	57
38	Provitamin A and vitamin C contents in selected California-grown cantaloupe and honeydew melons and imported melons. Journal of Food Composition and Analysis, 2011, 24, 194-201.	3.9	65
39	Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa. Current Microbiology, 2010, 60, 53-58.	2.2	242
40	The Evolution and Function of Carotenoid Hydroxylases in Arabidopsis. Plant and Cell Physiology, 2009, 50, 463-479.	3.1	167
41	Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots. BMC Plant Biology, 2009, 9, 1.	3.6	182
42	Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochemistry Reviews, 2008, 7, 445-465.	6.5	69
43	The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid A-ring hydroxylation activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 402-407.	7.1	209
44	Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Archives of Biochemistry and Biophysics, 2004, 430, 22-29.	3.0	88
45	Functional Analysis of β- and Îμ-Ring Carotenoid Hydroxylases in Arabidopsis. Plant Cell, 2003, 15, 1320-1332.	6.6	125
46	Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 309-319.	1.0	150
47	Characterization of a second carotenoid beta-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. , 2001, 47, 379-388.		86
48	Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology, 2001, 45, 281-293.	3.9	209