List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991803/publications.pdf Version: 2024-02-01

Διιβορλ Ριιίοι

#	Article	IF	CITATIONS
1	Modulation of mitochondrial and inflammatory homeostasis through RIP140 is neuroprotective in an adrenoleukodystrophy mouse model. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	6
2	A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 159-164.	14.5	41
3	Diagnosis of Genetic White Matter Disorders by Singleton Whole-Exome and Genome Sequencing Using Interactome-Driven Prioritization. Neurology, 2022, , 10.1212/WNL.000000000013278.	1.1	13
4	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	27.8	216
5	Low Lymphocytes and IFN-Neutralizing Autoantibodies as Biomarkers of COVID-19 Mortality. Journal of Clinical Immunology, 2022, 42, 738-741.	3.8	5
6	Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nature Medicine, 2022, 28, 879-882.	30.7	72
7	Accelerated biological aging in COVID-19 patients. Nature Communications, 2022, 13, 2135.	12.8	87
8	Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases. Journal of Molecular Diagnostics, 2022, 24, 529-542.	2.8	6
9	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
10	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	8.5	21
11	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	8.5	59
12	Epigenetic profiling linked to multisystem inflammatory syndrome in children (MIS-C): A multicenter, retrospective study. EClinicalMedicine, 2022, 50, 101515.	7.1	11
13	Activating cannabinoid receptor 2 preserves axonal health through GSK-3β/NRF2 axis in adrenoleukodystrophy. Acta Neuropathologica, 2022, 144, 241-258.	7.7	2
14	Epigenetic activation of antiviral sensors and effectors of interferon response pathways during SARS-CoV-2 infection. Biomedicine and Pharmacotherapy, 2022, 153, 113396.	5.6	5
15	CSVS, a crowdsourcing database of the Spanish population genetic variability. Nucleic Acids Research, 2021, 49, D1130-D1137.	14.5	34
16	Lipid alterations in human frontal cortex in ALSâ€FTLDâ€TDP43 proteinopathy spectrum are partly related to peroxisome impairment. Neuropathology and Applied Neurobiology, 2021, 47, 544-563.	3.2	14
17	DLG4-related synaptopathy: a new rare brain disorder. Genetics in Medicine, 2021, 23, 888-899.	2.4	16
18	Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males. EBioMedicine, 2021, 65, 103246.	6.1	52

#	Article	IF	CITATIONS
19	Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine, 2021, 66, 103339.	6.1	90
20	SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .	8.5	100
21	Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. Journal of Clinical Immunology, 2021, 41, 914-922.	3.8	100
22	Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nature Communications, 2021, 12, 2558.	12.8	28
23	Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. Journal of Clinical Immunology, 2021, 41, 1425-1442.	3.8	39
24	From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic‒Associated Pernio. Journal of Investigative Dermatology, 2021, 141, 2791-2796.	0.7	21
25	Biallelic <i>PI4KA</i> variants cause a novel neurodevelopmental syndrome with hypomyelinating leukodystrophy. Brain, 2021, 144, 2659-2669.	7.6	19
26	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
27	X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	11.9	267
28	The Genetic Landscape of Mitochondrial Diseases in Spain: A Nationwide Call. Genes, 2021, 12, 1590.	2.4	8
29	Bi-allelic variants in the mitochondrial RNase P subunit PRORP cause mitochondrial tRNA processing defects and pleiotropic multisystem presentations. American Journal of Human Genetics, 2021, 108, 2195-2204.	6.2	26
30	Anti-oxidant MitoQ rescue of AWB chemosensory neuron impairment in a model of X-linked Adrenoleukodystrophy. MicroPublication Biology, 2021, 2021, .	0.1	0
31	Complete loss of KCNA1 activity causes neonatal epileptic encephalopathy and dyskinesia. Journal of Medical Genetics, 2020, 57, 132-137.	3.2	26
32	Clinical presentation and proteomic signature of patients with <i>TANGO2</i> mutations. Journal of Inherited Metabolic Disease, 2020, 43, 297-308.	3.6	43
33	Truncating variants in <i>UBAP1</i> associated with childhoodâ€onset nonsyndromic hereditary spastic paraplegia. Human Mutation, 2020, 41, 632-640.	2.5	15
34	A deep intronic splice variant advises reexamination of presumably dominant SPG7 Cases. Annals of Clinical and Translational Neurology, 2020, 7, 105-111.	3.7	17
35	The Value of Mouse Models of Rare Diseases: A Spanish Experience. Frontiers in Genetics, 2020, 11, 583932.	2.3	12
36	Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome. Acta Neuropathologica, 2020, 140, 971-975.	7.7	24

#	Article	IF	CITATIONS
37	Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiology of Disease, 2020, 143, 105014.	4.4	27
38	A novel hypomorphic splice variant in EIF2B5 gene is associated with mild ovarioleukodystrophy. Annals of Clinical and Translational Neurology, 2020, 7, 1574-1579.	3.7	3
39	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,749
40	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,983
41	Case Report: Benign Infantile Seizures Temporally Associated With COVID-19. Frontiers in Pediatrics, 2020, 8, 507.	1.9	23
42	Expanding the clinical and genetic spectrum of PCYT2-related disorders. Brain, 2020, 143, e76-e76.	7.6	14
43	A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.	28.9	185
44	Highâ€dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy. Brain Pathology, 2020, 30, 945-963.	4.1	11
45	Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. Journal of Molecular Diagnostics, 2020, 22, 1205-1215.	2.8	14
46	POLR3A variants with striatal involvement and extrapyramidal movement disorder. Neurogenetics, 2020, 21, 121-133.	1.4	24
47	The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Free Radical Biology and Medicine, 2020, 152, 797-809.	2.9	19
48	<scp><i>HNRNPH1</i></scp> â€related syndromic intellectual disability: Seven additional cases suggestive of a distinct syndromic neurodevelopmental syndrome. Clinical Genetics, 2020, 98, 91-98.	2.0	25
49	Phenotypic correlations in a large singleâ€center cohort of patients with BSCL2 nerve disorders: a clinical, neurophysiological and muscle magnetic resonance imaging study. European Journal of Neurology, 2020, 27, 1364-1373.	3.3	8
50	Parkinsonism and spastic paraplegia type 7: Expanding the spectrum of mitochondrial Parkinsonism. Movement Disorders, 2019, 34, 1547-1561.	3.9	44
51	Biomarker Identification, Safety, and Efficacy of High-Dose Antioxidants for Adrenomyeloneuropathy: a Phase II Pilot Study. Neurotherapeutics, 2019, 16, 1167-1182.	4.4	31
52	A novel mutation in the <i>GFAP</i> gene expands the phenotype of Alexander disease. Journal of Medical Genetics, 2019, 56, 846-849.	3.2	9
53	FAHN/SPG35: a narrow phenotypic spectrum across disease classifications. Brain, 2019, 142, 1561-1572.	7.6	70
54	Reply to: "Mitochondrial Parkinsonism due to <i>SPG7/Paraplegin</i> variants with secondary mtDNA depletion― Movement Disorders, 2019, 34, 1932-1933.	3.9	0

#	Article	IF	CITATIONS
55	Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. Journal of Clinical Investigation, 2019, 129, 1240-1256.	8.2	68
56	Epigenomic signature of adrenoleukodystrophy predicts compromised oligodendrocyte differentiation. Brain Pathology, 2018, 28, 902-919.	4.1	21
5 7	Evaluation of afferent pain pathways in adrenomyeloneuropathic patients. Clinical Neurophysiology, 2018, 129, 507-515.	1.5	3
58	Dual Molecular Effects of Dominant RORA Mutations Cause Two Variants of Syndromic Intellectual Disability with Either Autism or Cerebellar Ataxia. American Journal of Human Genetics, 2018, 102, 744-759.	6.2	51
59	Genetic Variants in <i>HSD17B3</i> , <i>SMAD3</i> , and <i>IPO11</i> Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes. Clinical Pharmacology and Therapeutics, 2018, 103, 712-721.	4.7	30
60	Oxidative stress and mitochondrial dynamics malfunction are linked in <scp>P</scp> elizaeusâ€ <scp>M</scp> erzbacher disease. Brain Pathology, 2018, 28, 611-630.	4.1	15
61	Aberrant regulation of the <scp>CSK</scp> â€3β/ <scp>NRF</scp> 2 axis unveils a novel therapy for adrenoleukodystrophy. EMBO Molecular Medicine, 2018, 10, .	6.9	35
62	Inhibition of Gsk3b Reduces Nfkb1 Signaling and Rescues Synaptic Activity to Improve the Rett Syndrome Phenotype in Mecp2-Knockout Mice. Cell Reports, 2018, 23, 1665-1677.	6.4	36
63	SIRT2 in age-related neurodegenerative disorders. Aging, 2018, 10, 295-296.	3.1	6
64	Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis. American Journal of Human Genetics, 2017, 100, 105-116.	6.2	46
65	Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy. Acta Neuropathologica, 2017, 133, 283-301.	7.7	43
66	De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. American Journal of Human Genetics, 2017, 101, 768-788.	6.2	136
67	Loss of <scp>SIRT</scp> 2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell, 2017, 16, 1404-1413.	6.7	36
68	Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder. American Journal of Human Genetics, 2017, 101, 965-976.	6.2	41
69	<i>De novo</i> loss of function mutations in <i><scp>KIAA2022</scp></i> are associated with epilepsy and neurodevelopmental delay in females. Clinical Genetics, 2017, 91, 756-763.	2.0	24
70	Novel Therapeutic Targets and Drug Candidates for Modifying Disease Progression in Adrenoleukodystrophy. Endocrine Development, 2016, 30, 147-160.	1.3	13
71	Targeted activation of <scp>CREB</scp> in reactive astrocytes is neuroprotective in focal acute cortical injury. Glia, 2016, 64, 853-874.	4.9	27
72	A view on clinical genetics and genomics in Spain: of challenges and opportunities. Molecular Genetics & Genomic Medicine, 2016, 4, 376-391.	1.2	8

#	Article	IF	CITATIONS
73	Uniparental disomy of chromosome 16 unmasks recessive mutations of <i>FA2H</i> /SPG35 in 4 families. Neurology, 2016, 87, 186-191.	1.1	27
74	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
75	Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Molecular Genetics and Metabolism, 2015, 114. 388-396.	1.1	76
76	Autophagy induction halts axonal degeneration in a mouse model of X-adrenoleukodystrophy. Acta Neuropathologica, 2015, 129, 399-415.	7.7	39
77	Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 925-936.	3.8	43
78	Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: A paradigm for axonal degeneration. Free Radical Biology and Medicine, 2015, 88, 18-29.	2.9	54
79	Neuroinflammatory Signals in Alzheimer Disease and APP/PS1 Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 319-344.	1.7	105
80	Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death and Differentiation, 2015, 22, 1742-1753.	11.2	27
81	Altered glycolipid and glycerophospholipid signaling drive inflammatory cascades in adrenomyeloneuropathy. Human Molecular Genetics, 2015, 24, ddv375.	2.9	37
82	Deregulation of purine metabolism in Alzheimer's disease. Neurobiology of Aging, 2015, 36, 68-80.	3.1	108
83	PDR-1/hParkin negatively regulates the phagocytosis of apoptotic cell corpses in Caenorhabditis elegans. Cell Death and Disease, 2014, 5, e1120-e1120.	6.3	16
84	ABCD2 Alters Peroxisome Proliferator-Activated Receptor <i>α</i> Signaling In Vitro, but Does Not Impair Responses to Fenofibrate Therapy in a Mouse Model of Diet-Induced Obesity. Molecular Pharmacology, 2014, 86, 505-513.	2.3	7
85	Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metabolism, 2014, 19, 1034-1041.	16.2	211
86	PGCâ€1α: overexpression exacerbates βâ€amyloid and tau deposition in a transgenic mouse model of Alzheimer's disease. FASEB Journal, 2014, 28, 1745-1755.	0.5	47
87	Improvement of the Rett Syndrome Phenotype in a Mecp2 Mouse Model Upon Treatment with Levodopa and a Dopa-Decarboxylase Inhibitor. Neuropsychopharmacology, 2014, 39, 2846-2856.	5.4	38
88	Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Human Molecular Genetics, 2014, 23, 3716-3732.	2.9	115
89	Mitochondrial dysfunction and oxidative damage cooperatively fuel axonal degeneration in X-linked adrenoleukodystrophy. Biochimie, 2014, 98, 143-149.	2.6	42
90	Mitochondrial dysfunction in central nervous system white matter disorders. Glia, 2014, 62, 1878-1894.	4.9	52

#	Article	IF	CITATIONS
91	Glutathione imbalance in patients with X-linked adrenoleukodystrophy. Molecular Genetics and Metabolism, 2013, 109, 366-370.	1.1	39
92	Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Human Molecular Genetics, 2013, 22, 3296-3305.	2.9	95
93	Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain, 2013, 136, 2432-2443.	7.6	69
94	Oxidative stress regulates the ubiquitin–proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. Brain, 2013, 136, 891-904.	7.6	39
95	Cyclophilin D as a potential target for antioxidants in neurodegeneration: the X-ALD case. Biological Chemistry, 2013, 394, 621-629.	2.5	5
96	Functional Genomics Reveals Dysregulation of Cortical Olfactory Receptors in Parkinson Disease: Novel Putative Chemoreceptors in the Human Brain. Journal of Neuropathology and Experimental Neurology, 2013, 72, 524-539.	1.7	111
97	Histone Deacetylase Inhibitor Upregulates Peroxisomal Fatty Acid Oxidation and Inhibits Apoptotic Cell Death in Abcd1-Deficient Glial Cells. PLoS ONE, 2013, 8, e70712.	2.5	15
98	Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Human Molecular Genetics, 2012, 21, 5091-5105.	2.9	77
99	Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain, 2012, 135, 3584-3598.	7.6	78
100	Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy. Human Molecular Genetics, 2012, 21, 1062-1077.	2.9	62
101	The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid. Journal of Lipid Research, 2012, 53, 1071-1079.	4.2	27
102	JNK/ERK/FAK Mediate Promigratory Actions of Basic Fibroblast Growth Factor in Astrocytes via CCL2 and COX2. NeuroSignals, 2012, 20, 86-102.	0.9	17
103	Amyloid Generation and Dysfunctional Immunoproteasome Activation with Disease Progression in Animal Model of Familial Alzheimer's Disease. Brain Pathology, 2012, 22, 636-653.	4.1	95
104	Bezafibrate lowers very longâ€chain fatty acids in Xâ€linked adrenoleukodystrophy fibroblasts by inhibiting fatty acid elongation. Journal of Inherited Metabolic Disease, 2012, 35, 1137-1145.	3.6	39
105	Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: A paradigm for multifactorial neurodegenerative diseases?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1475-1488.	3.8	84
106	ATP and noradrenaline activate CREB in astrocytes via noncanonical Ca ²⁺ and cyclic AMP independent pathways. Glia, 2012, 60, 1330-1344.	4.9	23
107	Neurochemistry and the non-motor aspects of PD. Neurobiology of Disease, 2012, 46, 508-526.	4.4	73
108	Phylogenomic Evidence for a Myxococcal Contribution to the Mitochondrial Fatty Acid Beta-Oxidation. PLoS ONE, 2011, 6, e21989.	2.5	7

#	Article	IF	CITATIONS
109	The ABCD Subfamily: Peroxisomal Transporters in Health and Disease. , 2011, , 347-373.		0
110	Antioxidants halt axonal degeneration in a mouse model of Xâ€adrenoleukodystrophy. Annals of Neurology, 2011, 70, 84-92.	5.3	122
111	Oxidative Damage Compromises Energy Metabolism in the Axonal Degeneration Mouse Model of X-Adrenoleukodystrophy. Antioxidants and Redox Signaling, 2011, 15, 2095-2107.	5.4	78
112	General Aspects and Neuropathology of X‣inked Adrenoleukodystrophy. Brain Pathology, 2010, 20, 817-830.	4.1	112
113	Pathomechanisms Underlying Xâ€Adrenoleukodystrophy: A Threeâ€Hit Hypothesis. Brain Pathology, 2010, 20, 838-844.	4.1	116
114	Foreword. Brain Pathology, 2010, 20, 815-816.	4.1	3
115	Invariant NKT cells in adrenoleukodystrophy patients and mice. Journal of Neuroimmunology, 2010, 229, 204-211.	2.3	7
116	Current and Future Pharmacological Treatment Strategies in X‣inked Adrenoleukodystrophy. Brain Pathology, 2010, 20, 845-856.	4.1	80
117	Staging anti-inflammatory therapy in Alzheimer's disease. Frontiers in Aging Neuroscience, 2010, 2, 142.	3.4	32
118	Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Human Molecular Genetics, 2010, 19, 2005-2014.	2.9	90
119	ABCD2 is abundant in adipose tissue and opposes the accumulation of dietary erucic acid (C22:1) in fat. Journal of Lipid Research, 2010, 51, 162-168.	4.2	31
120	PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Research, 2010, 38, D800-D805.	14.5	103
121	A key role for the peroxisomal <i>ABCD2</i> transporter in fatty acid homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E211-E221.	3.5	91
122	Insulinâ€like growth factorâ€1 and neurotrophinâ€3 gene therapy prevents motor decline in an Xâ€linked adrenoleukodystrophy mouse model. Annals of Neurology, 2009, 66, 117-122.	5.3	28
123	Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Human Molecular Genetics, 2008, 17, 1762-1773.	2.9	181
124	Steroid Hormones Control Circadian Elovl3 Expression in Mouse Liver. Endocrinology, 2008, 149, 3158-3166.	2.8	44
125	PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease. Nucleic Acids Research, 2007, 35, D815-D822.	14.5	65
126	The role of peroxisomal ABC transporters in the mouse adrenal gland: the loss of Abcd2 (ALDR), Not Abcd1 (ALD), causes oxidative damage. Laboratory Investigation, 2007, 87, 261-272.	3.7	39

#	Article	IF	CITATIONS
127	The Evolutionary Origin of Peroxisomes: An ER-Peroxisome Connection. Molecular Biology and Evolution, 2006, 23, 838-845.	8.9	152
128	Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. Human Molecular Genetics, 2005, 14, 3565-3577.	2.9	90
129	Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Human Molecular Genetics, 2004, 13, 2997-3006.	2.9	170
130	Mouse liver PMP70 and ALDP: homomeric interactions prevail in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1689, 235-243.	3.8	51
131	Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Human Molecular Genetics, 2002, 11, 499-505.	2.9	176
132	ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: Role in diagnosis and clinical correlations. Human Mutation, 2001, 18, 499-515.	2.5	261
133	Inhibition of transcription-regulating properties of nonstructural protein 1 (NS1) of parvovirus minute virus of mice by a dominant-negative mutant form of NS1. Journal of General Virology, 2001, 82, 1929-1934.	2.9	8
134	Characterization of the Adrenoleukodystrophy-Related (ALDR, ABCD2) Gene Promoter: Inductibility by Retinoic Acid and Forskolin. Genomics, 2000, 70, 131-139.	2.9	25
135	Activation of Promoter P4 of the Autonomous Parvovirus Minute Virus of Mice at Early S Phase Is Required for Productive Infection. Journal of Virology, 1999, 73, 3877-3885.	3.4	55
136	The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature, 1997, 387, 98-102.	27.8	54
137	Sequence and Analysis of a 36·2 kb Fragment from the Right Arm of Yeast Chromosome XV Reveals 19 Open Reading Frames IncludingSNF2 (5′ end),CPA1,SLY41, a Putative Transport ATPase, a Putative Ribosomal Protein and anSNF2 Homologue. , 1997, 13, 479-482.		3
138	Inhibition of parvovirus minute virus of mice replication by a peptide involved in the oligomerization of nonstructural protein NS1. Journal of Virology, 1997, 71, 7393-7403.	3.4	44
139	Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X EMBO Journal, 1996, 15, 2031-2049.	7.8	78
140	Sequencing analysis of a 40·2 kb fragment of yeast chromosome X reveals 19 open reading frames including URA2 (5′ end), TRK1, PBS2, SPT10, GCD14, RPE1, PHO86, NCA3, ASF1, CCT7, GZF3, two tRNA genes three remnant delta elements and a Ty4 transposon. Yeast, 1996, 12, 1471-1474.	, 1.7	9
141	Isolation of a fully infectious variant of parvovirus H-1 supplanting the standard strain in human cells. Journal of Virology, 1995, 69, 4538-4543.	3.4	45