Sonia Guedan Carrio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991329/publications.pdf

Version: 2024-02-01

39 papers 4,110 citations

304743 22 h-index 454955 30 g-index

40 all docs

40 docs citations

times ranked

40

4995 citing authors

#	Article	IF	CITATIONS
1	Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity, 2016, 44, 380-390.	14.3	811
2	Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight, $2018, 3, .$	5.0	412
3	Engineering and Design of Chimeric Antigen Receptors. Molecular Therapy - Methods and Clinical Development, 2019, 12, 145-156.	4.1	281
4	ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood, 2014, 124, 1070-1080.	1.4	268
5	Emerging Cellular Therapies for Cancer. Annual Review of Immunology, 2019, 37, 145-171.	21.8	263
6	Identification of Chimeric Antigen Receptors That Mediate Constitutive or Inducible Proliferation of T Cells. Cancer Immunology Research, 2015, 3, 356-367.	3.4	247
7	Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus–Driven Production of a Bispecific T-cell Engager. Cancer Immunology Research, 2018, 6, 605-616.	3.4	199
8	Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCl Insight, $2018,3,.$	5. 0	191
9	Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth. Molecular Therapy, 2010, 18, 1275-1283.	8.2	170
10	CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Frontiers in Immunology, 2020, $11,1109$.	4.8	165
11	An NK-like CAR TÂcell transition in CAR TÂcell dysfunction. Cell, 2021, 184, 6081-6100.e26.	28.9	160
12	Oncolytic Adenoviral Delivery of an EGFR-Targeting T-cell Engager Improves Antitumor Efficacy. Cancer Research, 2017, 77, 2052-2063.	0.9	128
13	Gut microbiota modulates adoptive cell therapy via CD8 $\hat{l}\pm$ dendritic cells and IL-12. JCI Insight, 2018, 3, .	5.0	111
14	Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. Journal of Clinical Investigation, 2020, 130, 3087-3097.	8. 2	110
15	CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Frontiers in Immunology, 2018, 9, 2460.	4.8	101
16	Minimal RB-responsive E1A Promoter Modification to Attain Potency, Selectivity, and Transgene-arming Capacity in Oncolytic Adenoviruses. Molecular Therapy, 2010, 18, 1960-1971.	8.2	61
17	Bioselection of a Gain of Function Mutation that Enhances Adenovirus 5 Release and Improves Its Antitumoral Potency. Cancer Research, 2008, 68, 8928-8937.	0.9	52
18	GALV expression enhances the therapeutic efficacy of an oncolytic adenovirus by inducing cell fusion and enhancing virus distribution. Gene Therapy, 2012, 19, 1048-1057.	4.5	41

#	Article	IF	Citations
19	Analysis of CAR-Mediated Tonic Signaling. Methods in Molecular Biology, 2020, 2086, 223-236.	0.9	39
20	Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Human Gene Therapy, 2021, 32, 1044-1058.	2.7	35
21	A modified E2F-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Therapy, 2009, 16, 1441-1451.	4.5	34
22	Identification of cell surface targets for CAR-T cell therapies and antibody–drug conjugates in breast cancer. ESMO Open, 2021, 6, 100102.	4.5	24
23	Syncytia formation affects the yield and cytotoxicity of an adenovirus expressing a fusogenic glycoprotein at a late stage of replication. Gene Therapy, 2008, 15, 1240-1245.	4.5	18
24	Verapamil Enhances the Antitumoral Efficacy of Oncolytic Adenoviruses. Molecular Therapy, 2010, 18, 903-911.	8.2	16
25	Time 2EVOLVE: predicting efficacy of engineered T-cells $\hat{a} \in \text{``how far is the bench from the bedside?.'}, 2022, 10, e003487.$		13
26	Overcoming CAR-Mediated CD19 Downmodulation and Leukemia Relapse with T Lymphocytes Secreting Anti-CD19 T-cell Engagers. Cancer Immunology Research, 2022, 10, 498-511.	3.4	12
27	Adenovirus Release from the Infected Cell as a Key Factor for Adenovirus Oncolysis-!2009-10-09-!2010-02-25-!2010-05-26-!. The Open Gene Therapy Journal, 2010, 3, 24-30.	1.2	10
28	Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies., 2022, 10, e003532.		8
29	Immobilizing A Moving Target: CAR T Cells Hit CD22. Clinical Cancer Research, 2019, 25, 5188-5190.	7.0	4
30	515. Oncolytic Adenovirus Armed with Cytokines Enhances CAR-T Cell Efficacy in Pancreatic Tumor Model. Molecular Therapy, 2016, 24, S205-S206.	8.2	2
31	Analysis of Antitumor Effects of CAR-T Cells in Mice with Solid Tumors. Methods in Molecular Biology, 2020, 2086, 251-271.	0.9	2
32	Enhancing T cell persistence of CAR-redirected T cells in solid tumors. , 2014, 2, .		1
33	Abstract 4961: Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12., 2019,,		1
34	516. Chimeric Antigen Receptors With Distinct Signaling Domains Can Reprogram T Cells. Molecular Therapy, 2015, 23, S206-S207.	8.2	0
35	719. Combination of ICOS and 4-1BB in a Third Generation CAR Exhibits Enhanced T Cell Persistence and Increased Antitumor Effect. Molecular Therapy, 2015, 23, S287.	8.2	0
36	Signaling Domain of Chimeric Antigen Receptors Can Reprogram T Cells. Blood, 2014, 124, 551-551.	1.4	0

#	Article	IF	CITATIONS
37	Oncolytic Adenovirus Expressing Cytokines Enhances Anti-Tumor Efficacy of Mesothelin-Redirected CAR-T Cells. Blood, 2016, 128, 3360-3360.	1.4	O
38	Abstract 3798: Gut microbiota modulates adoptive cell therapy via CD8 $\hat{l}\pm$ dendritic cells. , 2018, , .		0
39	Abstract 4961: Gut microbiota modulates adoptive cell therapy via CD8Î \pm dendritic cells and IL-12. , 2019, , .		0