Xiaoshun Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991282/publications.pdf

Version: 2024-02-01

257450 189892 2,878 52 24 50 h-index citations g-index papers 52 52 52 2302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nature Photonics, 2014, 8, 524-529.	31.4	910
2	Demonstration of optical microfiber knot resonators. Applied Physics Letters, 2006, 88, 223501.	3.3	227
3	Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force. Physical Review Letters, 2009, 103, 103601.	7.8	158
4	All-fiber add-drop filters based on microfiber knot resonators. Optics Letters, 2007, 32, 1710.	3.3	154
5	Demonstration of microfiber knot laser. Applied Physics Letters, 2006, 89, 143513.	3.3	138
6	Microfiber knot dye laser based on the evanescent-wave-coupled gain. Applied Physics Letters, 2007, 90, 233501.	3.3	134
7	Demonstration of a chip-based optical isolator with parametric amplification. Nature Communications, 2016, 7, 13657.	12.8	89
8	High-Q double-disk microcavities for cavity optomechanics. Optics Express, 2009, 17, 20911.	3.4	77
9	Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities. Optics Express, 2012, 20, 18319.	3.4	76
10	Brillouin-Kerr Soliton Frequency Combs in an Optical Microresonator. Physical Review Letters, 2021, 126, 063901.	7.8	74
11	Photonic Flywheel in a Monolithic Fiber Resonator. Physical Review Letters, 2020, 125, 143902.	7.8	52
12	Transmission Nonreciprocity in a Mutually Coupled Circulating Structure. Physical Review Letters, 2018, 120, 203904.	7.8	48
13	Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Applied Physics Letters, 2009, 94, .	3.3	47
14	Parity-time symmetry in optical microcavity systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 222001.	1.5	45
15	Low-Threshold Microlaser in Er : Yb Phosphate Glass Coated Microsphere. IEEE Photonics Technology Letters, 2008, 20, 342-344.	2.5	39
16	Hyperboloidâ€Drum Microdisk Laser Biosensors for Ultrasensitive Detection of Human IgG. Small, 2020, 16, e2000239.	10.0	36
17	Realization of controllable photonic molecule based on three ultrahighâ€Q microtoroid cavities. Laser and Photonics Reviews, 2017, 11, 1600178.	8.7	33
18	Chipâ€Based Optical Isolator and Nonreciprocal Parityâ€Time Symmetry Induced by Stimulated Brillouin Scattering. Laser and Photonics Reviews, 2020, 14, 1900278.	8.7	31

#	Article	IF	CITATIONS
19	Optomechanically tuned electromagnetically induced transparency-like effect in coupled optical microcavities. Applied Physics Letters, 2016, 109, .	3.3	30
20	Generation of Optical Frequency Comb via Giant Optomechanical Oscillation. Physical Review Letters, 2021, 127, 134301.	7.8	29
21	Polymer micro or nanofibers for optical device applications. Journal of Applied Polymer Science, 2008, 110, 1080-1084.	2.6	28
22	Demonstration of an erbium-doped microsphere laser on a silicon chip. Laser Physics Letters, 2013, 10, 105809.	1.4	28
23	Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photonics Research, 2019, 7, 573.	7.0	27
24	Modeling rare-earth doped microfiber ring lasers. Optics Express, 2006, 14, 7073.	3.4	26
25	On-Chip Optical Nonreciprocity Using an Active Microcavity. Scientific Reports, 2016, 6, 38972.	3.3	23
26	Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited]. Photonics Research, 2017, 5, B54.	7.0	23
27	Demonstration of an ultra-low-threshold phonon laser with coupled microtoroid resonators in vacuum. Photonics Research, 2017, 5, 73.	7.0	23
28	Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity. Optics Express, 2012, 20, 29472.	3.4	20
29	High- <i>Q</i> and highly reproducible microdisks and microlasers. Nanoscale, 2018, 10, 2045-2051.	5.6	20
30	Fast- and slow-light-enhanced light drag in a moving microcavity. Communications Physics, 2020, 3, .	5.3	19
31	Multiphysical sensing of light, sound and microwave in a microcavity Brillouin laser. Nanophotonics, 2020, 9, 2915-2925.	6.0	19
32	Coupling Whispering-Gallery-Mode Microcavities With Modal Coupling Mechanism. IEEE Journal of Quantum Electronics, 2008, 44, 1065-1070.	1.9	18
33	High-Q silica microdisk optical resonators with large wedge angles on a silicon chip. Photonics Research, 2015, 3, 279.	7.0	18
34	Demonstration of ultralow-threshold 2 micrometer microlasers on chip. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	18
35	Analysis of a triple-cavity photonic molecule based on coupled-mode theory. Physical Review A, 2017, 95, .	2.5	18
36	Ultralow-threshold neodymium-doped microsphere lasers on a silicon chip. Optics Communications, 2017, 395, 51-54.	2.1	16

#	Article	IF	CITATIONS
37	New Insights into the Multiexciton Dynamics in Phase-Pure Thick-Shell CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 25059-25066.	3.1	16
38	Mid-infrared chalcogenide microfiber knot resonators. Photonics Research, 2020, 8, 616.	7.0	13
39	Controllable coupling between an ultra-high-Q microtoroid cavity and a graphene monolayer for optical filtering and switching applications. Optics Express, 2020, 28, 7906.	3.4	12
40	Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity. Photonics, 2015, 2, 498-508.	2.0	11
41	Polarized light source based on graphene-nanoribbon hybrid structure. Optics Communications, 2017, 395, 76-81.	2.1	10
42	A Compact and Highly Sensitive Voice-Eavesdropping Microresonator. Journal of Lightwave Technology, 2021, 39, 6327-6333.	4.6	10
43	Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip. Photonics Research, 2021, 9, 722.	7.0	8
44	High-power, low-noise Brillouin laser on a silicon chip. Optics Letters, 2022, 47, 1638.	3.3	7
45	A chip-based microcavity derived from multi-component tellurite glass. Journal of Materials Chemistry C, 2015, 3, 5141-5144.	5.5	5
46	Batch Fabrication of Highâ€Quality Infrared Chalcogenide Microsphere Resonators. Small, 2021, 17, e2100140.	10.0	4
47	Self-pulsations in a microcavity Brillouin laser. Optics Letters, 2022, 47, 421.	3.3	4
48	Free-space self-interference microresonator with tunable coupling regimes. Applied Physics Letters, 2020, 117, 031106.	3.3	3
49	Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-4.	5.1	2
50	Absorption and gain saturable nonlinearities in erbium-doped optical microcavities. Physical Review A, 2019, 100, .	2.5	2
51	Hybrid structure microlaser based on a nanowire and a silica microdisk cavity. , 2012, , .		0
52	High-order filters based on three high-Q microtoroid cavities. , 2017, , .		0