## **Thomas Dick**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991266/publications.pdf Version: 2024-02-01



THOMAS DICK

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Critical discussion on drug efflux in <i>Mycobacterium tuberculosis</i> . FEMS Microbiology Reviews, 2022, 46, .                                                                                                                                                | 8.6 | 29        |
| 2  | Cyclohexyl-griselimycin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0140021.                                                                                                                         | 3.2 | 8         |
| 3  | <i>In Vitro</i> Resistance against DNA Gyrase Inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus. Microbiology Spectrum, 2022, 10, e0132121.                                                                                                   | 3.0 | 11        |
| 4  | A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for Nontuberculous<br>Mycobacterial Lung Disease: Macrolide Case Study. Antimicrobial Agents and Chemotherapy, 2022, 66,<br>aac0221221.                                                 | 3.2 | 13        |
| 5  | Mutational Analysis of Mycobacterial F-ATP Synthase Subunit δ Leads to a Potent δ Enzyme Inhibitor. ACS<br>Chemical Biology, 2022, 17, 529-535.                                                                                                                 | 3.4 | 6         |
| 6  | Structure–Activity Relationship of Anti- <i>Mycobacterium abscessus</i> Piperidine-4-carboxamides, a<br>New Class of NBTI DNA Gyrase Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 417-427.                                                            | 2.8 | 2         |
| 7  | Anti-Mycobacterium abscessus Activity of Tuberculosis F-ATP Synthase Inhibitor GaMF1. Antimicrobial Agents and Chemotherapy, 2022, 66, e0001822.                                                                                                                | 3.2 | 4         |
| 8  | Drug development challenges in nontuberculous mycobacterial lung disease: TB to the rescue.<br>Journal of Experimental Medicine, 2022, 219, .                                                                                                                   | 8.5 | 16        |
| 9  | Atomic solution structure of <i>Mycobacterium abscessus</i> <scp>Fâ€ATP</scp> synthase subunit ε and<br>identification of <scp>Ep1<i>Mab</i>F1</scp> as a targeted inhibitor. FEBS Journal, 2022, 289, 6308-6323.                                               | 4.7 | 5         |
| 10 | Structural and Mechanistic Insights into <i>Mycobacterium abscessus</i> Aspartate Decarboxylase<br>PanD and a Pyrazinoic Acid-Derived Inhibitor. ACS Infectious Diseases, 2022, 8, 1324-1335.                                                                   | 3.8 | 4         |
| 11 | A systematic assessment of mycobacterial F <sub>1</sub> â€ATPase subunit ε's role in latent ATPase<br>hydrolysis. FEBS Journal, 2021, 288, 818-836.                                                                                                             | 4.7 | 11        |
| 12 | Amide–Amine Replacement in Indole-2-carboxamides Yields Potent Mycobactericidal Agents with<br>Improved Water Solubility. ACS Medicinal Chemistry Letters, 2021, 12, 704-712.                                                                                   | 2.8 | 10        |
| 13 | A Leucyl-tRNA Synthetase Inhibitor with Broad-Spectrum Antimycobacterial Activity. Antimicrobial<br>Agents and Chemotherapy, 2021, 65, .                                                                                                                        | 3.2 | 23        |
| 14 | <i>Mycobacterium tuberculosis</i> PanD Structure–Function Analysis and Identification of a Potent<br>Pyrazinoic Acid-Derived Enzyme Inhibitor. ACS Chemical Biology, 2021, 16, 1030-1039.                                                                       | 3.4 | 9         |
| 15 | Potency boost of a <i>Mycobacterium tuberculosis</i> dihydrofolate reductase inhibitor by<br>multienzyme F <sub>420</sub> H <sub>2</sub> -dependent reduction. Proceedings of the National<br>Academy of Sciences of the United States of America, 2021, 118, . | 7.1 | 9         |
| 16 | Reinvestigation of the structure-activity relationships of isoniazid. Tuberculosis, 2021, 129, 102100.                                                                                                                                                          | 1.9 | 4         |
| 17 | Piperidine-4-Carboxamides Target DNA Gyrase in Mycobacterium abscessus. Antimicrobial Agents and<br>Chemotherapy, 2021, 65, e0067621.                                                                                                                           | 3.2 | 14        |
| 18 | Blocking Bacterial Naphthohydroquinone Oxidation and ADP-Ribosylation Improves Activity of<br>Rifamycins against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65,<br>e0097821.                                                         | 3.2 | 13        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Ginger Root or Plum Model for the Tuberculosis "Granuloma�. American Journal of Respiratory<br>and Critical Care Medicine, 2021, 204, 505-507.                                                                | 5.6 | 2         |
| 20 | Epetraborole Is Active against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0115621.                                                                                              | 3.2 | 17        |
| 21 | A Mycobacterium tuberculosis NBTI DNA Gyrase Inhibitor Is Active against Mycobacterium abscessus.<br>Antimicrobial Agents and Chemotherapy, 2021, 65, e0151421.                                                 | 3.2 | 10        |
| 22 | Functionalized Dioxonaphthoimidazoliums: A Redox Cycling Chemotype with Potent Bactericidal<br>Activities against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2021, 64,<br>15991-16007. | 6.4 | 10        |
| 23 | Rifabutin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .                                                                                                 | 3.2 | 59        |
| 24 | Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. Progress in Biophysics and Molecular Biology, 2020, 152, 64-73.                                    | 2.9 | 22        |
| 25 | Targeted protein degradation in antibacterial drug discovery?. Progress in Biophysics and Molecular<br>Biology, 2020, 152, 10-14.                                                                               | 2.9 | 14        |
| 26 | Overexpression, purification, enzymatic and microscopic characterization of recombinant<br>mycobacterial F-ATP synthase. Biochemical and Biophysical Research Communications, 2020, 522,<br>374-380.            | 2.1 | 8         |
| 27 | Indole Propionic Acid, an Unusual Antibiotic Produced by the Gut Microbiota, With Anti-inflammatory and Antioxidant Properties. Frontiers in Microbiology, 2020, 11, 575586.                                    | 3.5 | 49        |
| 28 | Resistance against Membrane-Inserting MmpL3 Inhibitor through Upregulation of MmpL5 in<br>Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .                                        | 3.2 | 1         |
| 29 | Single Cell Analysis of Drug Susceptibility of Mycobacterium abscessus during Macrophage Infection.<br>Antibiotics, 2020, 9, 711.                                                                               | 3.7 | 3         |
| 30 | Potency Increase of Spiroketal Analogs of Membrane Inserting Indolyl Mannich Base<br>Antimycobacterials Is Due to Acquisition of MmpL3 Inhibition. ACS Infectious Diseases, 2020, 6,<br>1882-1893.              | 3.8 | 14        |
| 31 | Rifabutin: A Repurposing Candidate for Mycobacterium abscessus Lung Disease. Frontiers in<br>Microbiology, 2020, 11, 371.                                                                                       | 3.5 | 7         |
| 32 | Extreme Drug Tolerance of Mycobacterium abscessus "Persisters― Frontiers in Microbiology, 2020, 11,<br>359.                                                                                                     | 3.5 | 42        |
| 33 | Antituberculosis Activity of the Antimalaria Cytochrome <i>bcc</i> Oxidase Inhibitor SCR0911. ACS<br>Infectious Diseases, 2020, 6, 725-737.                                                                     | 3.8 | 10        |
| 34 | Reply to Vargas and Farhat: Mycobacterium tuberculosis glpK mutants in human tuberculosis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3913-3914.            | 7.1 | 3         |
| 35 | Rifabutin Suppresses Inducible Clarithromycin Resistance in Mycobacterium abscessus by Blocking<br>Induction of whiB7 and erm41. Antibiotics, 2020, 9, 72.                                                      | 3.7 | 20        |
| 36 | Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with<br>Diarylquinolines. Angewandte Chemie, 2020, 132, 13397-13406.                                                | 2.0 | 4         |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nature Communications, 2020, 11, 1661.                                                                                                                                         | 12.8 | 66        |
| 38 | Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with<br>Diarylquinolines. Angewandte Chemie - International Edition, 2020, 59, 13295-13304.                                                                 | 13.8 | 28        |
| 39 | TBAJ-876 Displays Bedaquiline-Like Mycobactericidal Potency without Retaining the Parental Drug's<br>Uncoupler Activity. Antimicrobial Agents and Chemotherapy, 2020, 64, .                                                                             | 3.2  | 22        |
| 40 | TBAJ-876, a 3,5-Dialkoxypyridine Analogue of Bedaquiline, Is Active against Mycobacterium abscessus.<br>Antimicrobial Agents and Chemotherapy, 2020, 64, .                                                                                              | 3.2  | 34        |
| 41 | Identification of New MmpL3 Inhibitors by Untargeted and Targeted Mutant Screens Defines MmpL3<br>Domains with Differential Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .                                                              | 3.2  | 33        |
| 42 | TBAJ-876 Retains Bedaquiline's Activity against Subunits c and ε of <i>Mycobacterium tuberculosis</i> F-ATP Synthase. Antimicrobial Agents and Chemotherapy, 2019, 63, .                                                                                | 3.2  | 37        |
| 43 | Editorial: NTM—The New Uber-Bugs. Frontiers in Microbiology, 2019, 10, 1299.                                                                                                                                                                            | 3.5  | 7         |
| 44 | Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends in<br>Pharmacological Sciences, 2019, 40, 930-940.                                                                                                     | 8.7  | 35        |
| 45 | Disrupting coupling within mycobacterial F-ATP synthases subunit ε causes dysregulated energy<br>production and cell wall biosynthesis. Scientific Reports, 2019, 9, 16759.                                                                             | 3.3  | 29        |
| 46 | Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA<br>(Guanine37- <i>N</i> <sup>1</sup> )-Methyltransferase (TrmD) by Restructuring the Active Site with a<br>Tyrosine-Flipping Mechanism. Journal of Medicinal Chemistry, 2019, 62, 7788-7805. | 6.4  | 27        |
| 47 | Phase variation in <i>Mycobacterium tuberculosis glpK</i> produces transiently heritable drug<br>tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>19665-19674.                                 | 7.1  | 96        |
| 48 | Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opinion on Drug<br>Discovery, 2019, 14, 867-878.                                                                                                                              | 5.0  | 49        |
| 49 | Bedaquiline Eliminates Bactericidal Activity of β-Lactams against Mycobacterium abscessus.<br>Antimicrobial Agents and Chemotherapy, 2019, 63, .                                                                                                        | 3.2  | 26        |
| 50 | Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in<br><i>Mycobacterium tuberculosis</i> . MBio, 2019, 10, .                                                                                                             | 4.1  | 63        |
| 51 | Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline. Antibiotics, 2019, 8, 261.                                                                                                                                        | 3.7  | 37        |
| 52 | Advancing Translational Science for Pulmonary Nontuberculous Mycobacterial Infections. A Road<br>Map for Research. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 947-951.                                                      | 5.6  | 53        |
| 53 | Verapamil Targets Membrane Energetics in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .                                                                                                                                 | 3.2  | 79        |
| 54 | NTM drug discovery: status, gaps and the way forward. Drug Discovery Today, 2018, 23, 1502-1519.                                                                                                                                                        | 6.4  | 186       |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The <scp>NMR</scp> solution structure of <i>Mycobacterium tuberculosis</i> Fâ€ <scp>ATP</scp><br>synthase subunit ε provides new insight into energy coupling inside the rotary engine. FEBS Journal,<br>2018, 285, 1111-1128. | 4.7  | 37        |
| 56 | 1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate<br>reductase inhibitors with potent whole cell activity. European Journal of Medicinal Chemistry, 2018,<br>144, 262-276.         | 5.5  | 30        |
| 57 | Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as<br>Antitubercular. Antimicrobial Agents and Chemotherapy, 2018, 62, .                                                      | 3.2  | 49        |
| 58 | Novel Acetamide Indirectly Targets Mycobacterial Transporter MmpL3 by Proton Motive Force<br>Disruption. Frontiers in Microbiology, 2018, 9, 2960.                                                                             | 3.5  | 28        |
| 59 | Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε.<br>Journal of Structural Biology, 2018, 204, 420-434.                                                                          | 2.8  | 9         |
| 60 | The Mycobacterial Membrane: A Novel Target Space for Anti-tubercular Drugs. Frontiers in Microbiology, 2018, 9, 1627.                                                                                                          | 3.5  | 40        |
| 61 | Teicoplanin – Tigecycline Combination Shows Synergy Against Mycobacterium abscessus. Frontiers in<br>Microbiology, 2018, 9, 932.                                                                                               | 3.5  | 19        |
| 62 | Impact of immunopathology on the antituberculous activity of pyrazinamide. Journal of Experimental<br>Medicine, 2018, 215, 1975-1986.                                                                                          | 8.5  | 29        |
| 63 | Mycobacterial Cell Wall Synthesis Inhibitors Cause Lethal ATP Burst. Frontiers in Microbiology, 2018,<br>9, 1898.                                                                                                              | 3.5  | 53        |
| 64 | TB drug susceptibility is more than MIC. Nature Microbiology, 2018, 3, 971-972.                                                                                                                                                | 13.3 | 6         |
| 65 | Indolyl Azaspiroketal Mannich Bases Are Potent Antimycobacterial Agents with Selective Membrane<br>Permeabilizing Effects and in Vivo Activity. Journal of Medicinal Chemistry, 2018, 61, 5733-5750.                           | 6.4  | 28        |
| 66 | Towards Selective Mycobacterial ClpP1P2 Inhibitors with Reduced Activity against the Human Proteasome. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                                      | 3.2  | 25        |
| 67 | In Vivo-Selected Pyrazinoic Acid-Resistant <i>Mycobacterium tuberculosis</i> Strains Harbor Missense<br>Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1. ACS Infectious Diseases, 2017,<br>3, 492-501.   | 3.8  | 33        |
| 68 | Rifabutin Is Active against Mycobacterium abscessus Complex. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                                                                                | 3.2  | 119       |
| 69 | The uniqueness of subunit $\hat{I}_{\pm}$ of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation. Journal of Biological Chemistry, 2017, 292, 11262-11279.                                             | 3.4  | 33        |
| 70 | Draft Genome Sequence of Mycobacterium abscessus Bamboo. Genome Announcements, 2017, 5, .                                                                                                                                      | 0.8  | 32        |
| 71 | Amphiphilic Indole Derivatives as Antimycobacterial Agents: Structure–Activity Relationships and<br>Membrane Targeting Properties. Journal of Medicinal Chemistry, 2017, 60, 2745-2763.                                        | 6.4  | 68        |
| 72 | Mycobacterial Caseinolytic Protease Gene Regulator ClgR Is a Substrate of Caseinolytic Protease.<br>MSphere, 2017, 2, .                                                                                                        | 2.9  | 16        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Vancomycin and Clarithromycin Show Synergy against Mycobacterium abscessus In Vitro.<br>Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                                                     | 3.2 | 29        |
| 74 | Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase<br>PanD. ACS Infectious Diseases, 2017, 3, 807-819.                                                                       | 3.8 | 52        |
| 75 | Indolylalkyltriphenylphosphonium Analogues Are Membrane-Depolarizing Mycobactericidal Agents.<br>ACS Medicinal Chemistry Letters, 2017, 8, 1165-1170.                                                                          | 2.8 | 19        |
| 76 | Draft Genome Sequence of Mycobacterium avium 11. Genome Announcements, 2017, 5, .                                                                                                                                              | 0.8 | 7         |
| 77 | Missense Mutations in the Unfoldase ClpC1 of the Caseinolytic Protease Complex Are Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .                   | 3.2 | 31        |
| 78 | Bortezomib Warhead-Switch Confers Dual Activity against Mycobacterial Caseinolytic Protease and Proteasome and Selectivity against Human Proteasome. Frontiers in Microbiology, 2017, 8, 746.                                  | 3.5 | 19        |
| 79 | Screening of TB Actives for Activity against Nontuberculous Mycobacteria Delivers High Hit Rates.<br>Frontiers in Microbiology, 2017, 8, 1539.                                                                                 | 3.5 | 57        |
| 80 | Boromycin Kills Mycobacterial Persisters without Detectable Resistance. Frontiers in Microbiology, 2016, 7, 199.                                                                                                               | 3.5 | 67        |
| 81 | Mild Nutrient Starvation Triggers the Development of a Small-Cell Survival Morphotype in Mycobacteria. Frontiers in Microbiology, 2016, 7, 947.                                                                                | 3.5 | 49        |
| 82 | Rel Is Required for Morphogenesis of Resting Cells in Mycobacterium smegmatis. Frontiers in<br>Microbiology, 2016, 7, 1390.                                                                                                    | 3.5 | 20        |
| 83 | Fragment-Based Whole Cell Screen Delivers Hits against M. tuberculosis and Non-tuberculous<br>Mycobacteria. Frontiers in Microbiology, 2016, 7, 1392.                                                                          | 3.5 | 20        |
| 84 | Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infectious Diseases, 2016, 2, 616-626.                                            | 3.8 | 83        |
| 85 | Deletion of a unique loop in the mycobacterial Fâ€ <scp>ATP</scp> synthase γ subunit sheds light on its<br>inhibitory role in <scp>ATP</scp> hydrolysisâ€driven H <sup>+</sup> pumping. FEBS Journal, 2016, 283,<br>1947-1961. | 4.7 | 43        |
| 86 | Developmental transcriptome of resting cell formation in Mycobacterium smegmatis. BMC Genomics, 2016, 17, 837.                                                                                                                 | 2.8 | 30        |
| 87 | Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiology, 2016, 11, 643-650.                                                                         | 2.0 | 36        |
| 88 | The uniqueness of subunit α and γ of mycobacterial F-ATP synthases: Evolutionary variants for niche<br>adaptation. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e90.                                             | 1.0 | 0         |
| 89 | Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. European Journal of Medicinal Chemistry, 2016, 123, 684-703.                                                | 5.5 | 30        |
| 90 | Bedaquiline Targets the ε Subunit of Mycobacterial F-ATP Synthase. Antimicrobial Agents and<br>Chemotherapy, 2016, 60, 6977-6979.                                                                                              | 3.2 | 58        |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Eagle Effect in Nonreplicating Persister Mycobacteria. Antimicrobial Agents and Chemotherapy, 2015, 59, 7786-7789.                                                                                                                                      | 3.2  | 13        |
| 92  | Antibacterial Drug Discovery: Doing It Right. Chemistry and Biology, 2015, 22, 5-6.                                                                                                                                                                     | 6.0  | 9         |
| 93  | The new tuberculosis drug Perchlozone® shows cross-resistance with thiacetazone. International<br>Journal of Antimicrobial Agents, 2015, 45, 430-433.                                                                                                   | 2.5  | 23        |
| 94  | Metabolic flexibility and morphological plasticity in mycobacteria. Future Microbiology, 2015, 10, 449-452.                                                                                                                                             | 2.0  | 3         |
| 95  | Target Mechanism-Based Whole-Cell Screening Identifies Bortezomib as an Inhibitor of Caseinolytic<br>Protease in Mycobacteria. MBio, 2015, 6, e00253-15.                                                                                                | 4.1  | 69        |
| 96  | Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. Journal of Antimicrobial Chemotherapy, 2015, 70, 857-867.                                                                                                      | 3.0  | 129       |
| 97  | Pharmacokinetics-Pharmacodynamics Analysis of Bicyclic 4-Nitroimidazole Analogs in a Murine Model of Tuberculosis. PLoS ONE, 2014, 9, e105222.                                                                                                          | 2.5  | 23        |
| 98  | Future target-based drug discovery for tuberculosis?. Tuberculosis, 2014, 94, 551-556.                                                                                                                                                                  | 1.9  | 43        |
| 99  | Reactive dirty fragments: implications for tuberculosis drug discovery. Current Opinion in Microbiology, 2014, 21, 7-12.                                                                                                                                | 5.1  | 28        |
| 100 | Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides: A Promising Class of<br>Antituberculosis Agents. Journal of Medicinal Chemistry, 2013, 56, 8849-8859.                                                                            | 6.4  | 85        |
| 101 | In silico analyses for the discovery of tuberculosis drug targets. Journal of Antimicrobial<br>Chemotherapy, 2013, 68, 2701-2709.                                                                                                                       | 3.0  | 30        |
| 102 | A novel <scp>F<sub>420</sub></scp> â€dependent antiâ€oxidant mechanism protects<br><i><scp>M</scp>ycobacterium tuberculosis</i> against oxidative stress and bactericidal agents.<br>Molecular Microbiology, 2013, 87, 744-755.                         | 2.5  | 99        |
| 103 | Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis. Science<br>Translational Medicine, 2013, 5, 214ra168.                                                                                                        | 12.4 | 134       |
| 104 | Reduced Drug Uptake in Phenotypically Resistant Nutrient-Starved Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 1648-1653.                                                                                 | 3.2  | 133       |
| 105 | para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium<br>tuberculosis Journal of Biological Chemistry, 2013, 288, 28951.                                                                                             | 3.4  | 3         |
| 106 | Variations of Subunit ε of the Mycobacterium tuberculosis F <sub>1</sub> F <sub>0</sub> ATP<br>Synthase and a Novel Model for Mechanism of Action of the Tuberculosis Drug TMC207. Antimicrobial<br>Agents and Chemotherapy, 2013, 57, 168-176.         | 3.2  | 64        |
| 107 | para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in Mycobacterium<br>tuberculosis. Journal of Biological Chemistry, 2013, 288, 23447-23456.                                                                                      | 3.4  | 158       |
| 108 | Characterization of Phosphofructokinase Activity in Mycobacterium tuberculosis Reveals That a<br>Functional Glycolytic Carbon Flow Is Necessary to Limit the Accumulation of Toxic Metabolic<br>Intermediates under Hypoxia. PLoS ONE, 2013, 8, e56037. | 2.5  | 46        |

| #   | Article                                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Exploring the Mode of Action of Bioactive Compounds by Microfluidic Transcriptional Profiling in Mycobacteria. PLoS ONE, 2013, 8, e69191.                                                                                                                                                                            | 2.5  | 14        |
| 110 | Heterogeneity of Mycobacterium tuberculosis strains in Makassar, Indonesia. International Journal of<br>Tuberculosis and Lung Disease, 2012, 16, 1441-1448.                                                                                                                                                          | 1.2  | 7         |
| 111 | HowMycobacterium tuberculosisgoes to sleep: the dormancy survival regulator DosR a decade later.<br>Future Microbiology, 2012, 7, 513-518.                                                                                                                                                                           | 2.0  | 88        |
| 112 | Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis, 2012, 92, 453-488.                                                                                                                                                                          | 1.9  | 193       |
| 113 | Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.                                                                                                                                                                                                                                | 1.9  | 33        |
| 114 | A High-Throughput Screen To Identify Inhibitors of ATP Homeostasis in Non-replicating<br><i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2012, 7, 1190-1197.                                                                                                                                               | 3.4  | 123       |
| 115 | Substrate specificity of the deazaflavinâ€dependent nitroreductase from<br><i>Mycobacteriumâ€ftuberculosis</i> responsible for the bioreductive activation of bicyclic<br>nitroimidazoles. FEBS Journal, 2012, 279, 113-125.                                                                                         | 4.7  | 70        |
| 116 | Structure of Ddn, the Deazaflavin-Dependent Nitroreductase from Mycobacterium tuberculosis<br>Involved in Bioreductive Activation of PA-824. Structure, 2012, 20, 101-112.                                                                                                                                           | 3.3  | 80        |
| 117 | How antibacterials really work: impact on drug discovery. Future Microbiology, 2011, 6, 603-604.                                                                                                                                                                                                                     | 2.0  | 18        |
| 118 | Structure–Activity Relationships of Antitubercular Nitroimidazoles. 3. Exploration of the Linker and Lipophilic Tail of (( <i>S</i> )-2-Nitro-6,7-dihydro-5 <i>H</i> -imidazo[2,1- <i>b</i> ][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-Amino PA-824) Journal of Medicinal Chemistry, 2011, 54, 5639-5659. | 6.4  | 38        |
| 119 | Drug resistance among tuberculosis patients attending diagnostic and treatment centres in Makassar,<br>Indonesia. International Journal of Tuberculosis and Lung Disease, 2011, 15, 489-495.                                                                                                                         | 1.2  | 17        |
| 120 | Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis.<br>Molecular Microbiology, 2010, 78, 980-988.                                                                                                                                                                         | 2.5  | 78        |
| 121 | Spectrum of latent tuberculosis — existing tests cannot resolve the underlying phenotypes: author's reply. Nature Reviews Microbiology, 2010, 8, 242-242.                                                                                                                                                            | 28.6 | 15        |
| 122 | Nitrate Respiration Protects Hypoxic Mycobacterium tuberculosis Against Acid- and Reactive Nitrogen Species Stresses. PLoS ONE, 2010, 5, e13356.                                                                                                                                                                     | 2.5  | 91        |
| 123 | A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Communications, 2010, 1, 57.                                                                                                                                         | 12.8 | 250       |
| 124 | Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology (United Kingdom), 2010, 156, 81-87.                                                                                              | 1.8  | 251       |
| 125 | Lipid Droplet-associated Proteins Are Involved in the Biosynthesis and Hydrolysis of Triacylglycerol in<br>Mycobacterium bovis Bacillus Calmette-Guérin. Journal of Biological Chemistry, 2010, 285, 21662-21670.                                                                                                    | 3.4  | 72        |
|     |                                                                                                                                                                                                                                                                                                                      |      |           |

126 Tuberculosis Biology and Drug Discovery. , 2010, , 13-18.

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Triacylglycerol Utilization Is Required for Regrowth of In Vitro Hypoxic Nonreplicating<br><i>Mycobacterium bovis</i> Bacillus Calmette-Guerin. Journal of Bacteriology, 2009, 191, 5037-5043.                                                           | 2.2  | 119       |
| 128 | The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, 2009, 7, 845-855.                                                                                                                  | 28.6 | 1,179     |
| 129 | Structureâ^'Activity Relationships of Antitubercular Nitroimidazoles. 2. Determinants of Aerobic<br>Activity and Quantitative Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2009, 52,<br>1329-1344.                                | 6.4  | 82        |
| 130 | Peptide deformylase inhibitors of Mycobacterium tuberculosis: Synthesis, structural investigations, and biological results. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6568-6572.                                                             | 2.2  | 37        |
| 131 | Recombinase-based reporter system and antisense technology to study gene expression and essentiality in hypoxic nonreplicating mycobacteria. FEMS Microbiology Letters, 2008, 284, 68-75.                                                                | 1.8  | 10        |
| 132 | Biochemical and structural characterization of the putative dihydropteroate synthase ortholog<br>Rv1207 of <i>Mycobacterium tuberculosis</i> . FEMS Microbiology Letters, 2008, 287, 128-135.                                                            | 1.8  | 18        |
| 133 | The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11945-11950. | 7.1  | 471       |
| 134 | Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of<br>Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2008, 62, 713-719.                                                                 | 3.0  | 92        |
| 135 | Sensitive profiling of chemically diverse bioactive lipids. Journal of Lipid Research, 2007, 48, 1976-1984.                                                                                                                                              | 4.2  | 82        |
| 136 | Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in<br>Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of<br>America, 2006, 103, 431-436.                        | 7.1  | 325       |
| 137 | Peptide Deformylase Inhibitors as Potent Antimycobacterial Agents. Antimicrobial Agents and Chemotherapy, 2006, 50, 3665-3673.                                                                                                                           | 3.2  | 50        |
| 138 | Role for malonyl coenzyme A:acyl carrier protein transacylase (MCAT) in the growth-inhibitory effect<br>of the calmodulin antagonist trifluoperazine in Mycobacterium bovis BCG. Journal of Antimicrobial<br>Chemotherapy, 2004, 53, 1072-1075.          | 3.0  | 6         |
| 139 | Isoniazid resistance of exponentially growingMycobacterium smegmatisbiofilm culture. FEMS<br>Microbiology Letters, 2003, 227, 171-174.                                                                                                                   | 1.8  | 54        |
| 140 | Apparent growth phase-dependent phosphorylation of malonyl coenzyme A:acyl carrier protein<br>transacylase (MCAT), a major fatty acid synthase II component inMycobacterium bovisBCG. FEMS<br>Microbiology Letters, 2003, 227, 141-147.                  | 1.8  | 5         |
| 141 | Mycobacterium bovis BCG Response Regulator Essential for Hypoxic Dormancy. Journal of Bacteriology, 2002, 184, 6760-6767.                                                                                                                                | 2.2  | 255       |
| 142 | In vitro activity of the chelating agents nitroxoline and oxine against Mycobacterium bovis BCG.<br>International Journal of Antimicrobial Agents, 2001, 18, 579-582.                                                                                    | 2.5  | 20        |
| 143 | In Vitro Activities of Mitomycin C against Growing and Hypoxic Dormant Tubercle Bacilli.<br>Antimicrobial Agents and Chemotherapy, 2001, 45, 2403-2404.                                                                                                  | 3.2  | 12        |
| 144 | Mycobacterium bovis BCG recADeletion Mutant Shows Increased Susceptibility to DNA-Damaging<br>Agents but Wild-Type Survival in a Mouse Infection Model. Infection and Immunity, 2001, 69, 3562-3568.                                                     | 2.2  | 57        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Proteins of Mycobacterium bovis BCG Induced in the Wayne Dormancy Model. Journal of Bacteriology, 2001, 183, 2672-2676.                                                                              | 2.2 | 111       |
| 146 | Plate-based dormancy culture system for Mycobacterium smegmatis and isolation of metronidazole-resistant mutants. FEMS Microbiology Letters, 2001, 200, 215-219.                                     | 1.8 | 0         |
| 147 | Bacterial and host-derived cationic proteins bind α2-laminins and enhance Mycobacterium leprae attachment to human Schwann cells. Microbes and Infection, 2000, 2, 1407-1417.                        | 1.9 | 40        |
| 148 | Analysis of the dormancy-induciblenarK2promoter inMycobacterium bovisBCG. FEMS Microbiology<br>Letters, 2000, 188, 141-146.                                                                          | 1.8 | 34        |
| 149 | Inducibility of the Streptomyces traRts107-Ptra Expression Cassette in Mycobacterium smegmatis.<br>Biological Chemistry, 2000, 381, 517-9.                                                           | 2.5 | 8         |
| 150 | Up-regulation ofnarX, encoding a putative â€Â~fused nitrate reductase' in anaerobic<br>dormantMycobacterium bovisBCG. FEMS Microbiology Letters, 1999, 178, 63-69.                                   | 1.8 | 44        |
| 151 | Upregulation of stress response genes and ABC transporters in anaerobic stationary-phase<br>Mycobacterium smegmatis. Molecular Genetics and Genomics, 1999, 262, 677-682.                            | 2.4 | 32        |
| 152 | Molecular genetic characterisation of whiB3, a mycobacterial homologue of a Streptomyces sporulation factor. Research in Microbiology, 1999, 150, 295-301.                                           | 2.1 | 21        |
| 153 | Up-regulation of narX, encoding a putative 'fused nitrate reductase' in anaerobic dormant<br>Mycobacterium bovis BCG. FEMS Microbiology Letters, 1999, 178, 63-69.                                   | 1.8 | 2         |
| 154 | Oxygen Depletion-Induced Dormancy in <i>Mycobacterium bovis</i> BCG. Journal of Bacteriology, 1999, 181, 2252-2256.                                                                                  | 2.2 | 117       |
| 155 | Oxygen depletion induced dormancy inMycobacterium smegmatis. FEMS Microbiology Letters, 1998, 163, 159-164.                                                                                          | 1.8 | 154       |
| 156 | Increased alanine dehydrogenase activity during dormancy inMycobacterium smegmatis. FEMS<br>Microbiology Letters, 1998, 167, 7-11.                                                                   | 1.8 | 68        |
| 157 | Upregulation of a histone-like protein in dormant Mycobacterium smegmatis. Molecular Genetics and Genomics, 1998, 260, 475-479.                                                                      | 2.4 | 53        |
| 158 | Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. FEMS<br>Microbiology Letters, 1998, 167, 7-11.                                                                  | 1.8 | 3         |
| 159 | Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiology Letters, 1998, 163, 159-164.                                                                                         | 1.8 | 3         |
| 160 | Drosophila DPP2C1, a novel member of the protein phosphatase 2C (PP2C) family. Gene, 1997, 199, 139-143.                                                                                             | 2.2 | 4         |
| 161 | Cytoplasmic Dynein ( <i>ddlc1</i> ) Mutations Cause Morphogenetic Defects and Apoptotic Cell Death<br>in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 1996, 16, 1966-1977.       | 2.3 | 160       |
| 162 | The role of a Drosophila POU homeo domain gene in the specification of neural precursor cell<br>identity in the developing embryonic central nervous system Genes and Development, 1993, 7, 504-516. | 5.9 | 66        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Two closely linked Drosophila POU domain genes are expressed in neuroblasts and sensory elements<br>Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7645-7649. | 7.1 | 58        |
| 164 | Chloramphenicol-induced translational activation of cat messenger RNA in vitro. Journal of<br>Molecular Biology, 1990, 212, 661-668.                                                                      | 4.2 | 11        |
| 165 | Positioning ribosomes on leader mRNA for translational activation of the message of an inducible<br>Staphylococcus aureus cat gene. Molecular Genetics and Genomics, 1988, 214, 108-111.                  | 2.4 | 18        |
| 166 | Dependence of expression of an inducible Staphylococcus aureus cat gene on the translation of its leader sequence. Molecular Genetics and Genomics, 1987, 207, 486-491.                                   | 2.4 | 25        |
| 167 | Alkyltriphenylphosphonium Turns Redox-Cycling Naphthoquinoneimidazoles into Potent<br>Membrane Depolarizers Against <i>Mycobacteria</i> . SSRN Electronic Journal, 0, , .                                 | 0.4 | 0         |