
Michael Boylan-Kolchin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 415, L40-L44.	1.2	1,081
2	From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ĥCDM cosmology. Monthly Notices of the Royal Astronomical Society, 2011, 413, 101-131.	1.6	950
3	Small-Scale Challenges to the <i>i>i></i> CDM Paradigm. Annual Review of Astronomy and Astrophysics, 2017, 55, 343-387.	8.1	921
4	Resolving cosmic structure formation with the Millennium-II Simulation. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1150-1164.	1.6	747
5	FIRE-2 simulations: physics versus numerics in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 800-863.	1.6	676
6	The Milky Way's bright satellites as an apparent failure of ΛCDM. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1203-1218.	1.6	608
7	The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2267-2278.	1.6	473
8	Dynamical friction and galaxy merging time-scales. Monthly Notices of the Royal Astronomical Society, 2008, 383, 93-101.	1.6	334
9	How do galaxies populate dark matter haloes?. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	322
10	Forged in fire: cusps, cores and baryons in low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2092-2106.	1.6	291
11	ELVIS: Exploring the Local Volume in Simulations. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2578-2596.	1.6	269
12	Galaxy formation in WMAP1 and WMAP7 cosmologies. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1351-1365.	1.6	266
13	Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxiesÂ. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1709-1727.	1.6	242
14	Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4559-4570.	1.6	208
15	The mass–concentration–redshift relation of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2014, 441, 378-388.	1.6	204
16	Too big to fail in the Local Group. Monthly Notices of the Royal Astronomical Society, 2014, 444, 222-236.	1.6	200
17	Red mergers and the assembly of massive elliptical galaxies: the fundamental plane and its projections. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1081-1089.	1.6	180
18	fire in the field: simulating the threshold of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3547-3562.	1.6	173

#	Article	IF	CITATIONS
19	THE SPACE MOTION OF LEO I: THE MASS OF THE MILKY WAY'S DARK MATTER HALO. Astrophysical Journal, 2013, 768, 140.	1.6	167
20	The mass profile and accretion history of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1103-1113.	1.6	161
21	Galactic accretion and the outer structure of galaxies in the CDM model. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3348-3367.	1.6	159
22	Can feedback solve the too-big-to-fail problem?. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3539-3546.	1.6	141
23	How to model supernovae in simulations of star and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1578-1603.	1.6	140
24	Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4447-4463.	1.6	139
25	The dynamics of isolated Local Group galaxiesâ~ Monthly Notices of the Royal Astronomical Society, 2014, 439, 1015-1027.	1.6	138
26	The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1380-1399.	1.6	137
27	Gas kinematics, morphology and angular momentum in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1930-1955.	1.6	131
28	The origin of ultra diffuse galaxies: stellar feedback and quenching. Monthly Notices of the Royal Astronomical Society, 2018, 478, 906-925.	1.6	125
29	Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1305-1316.	1.6	124
30	SEGUE 2: THE LEAST MASSIVE GALAXY. Astrophysical Journal, 2013, 770, 16.	1.6	120
31	The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3. Nature, 2013, 498, 338-341.	13.7	119
32	SMALL-SCALE STRUCTURE IN THE SLOAN DIGITAL SKY SURVEY AND ĥCDM: ISOLATED â^¼ <i>L</i> _* GALAXIES WITH BRIGHT SATELLITES. Astrophysical Journal, 2011, 738, 102.	1.6	111
33	The formation and hierarchical assembly of globular cluster populations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4528-4552.	1.6	107
34	Dissipationless mergers of elliptical galaxies and the evolution of the fundamental plane. Monthly Notices of the Royal Astronomical Society, 2005, 362, 184-196.	1.6	106
35	There's no place like home? Statistics of Milky Way-mass dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	106
36	Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1694-1715.	1.6	106

MICHAEL BOYLAN-KOLCHIN

#	Article	IF	CITATIONS
37	ON THE HOT GAS CONTENT OF THE MILKY WAY HALO. Astrophysical Journal, 2013, 762, 20.	1.6	103
38	A 700 Year-old Pulsar in the Supernova Remnant Kesteven 75. Astrophysical Journal, 2000, 542, L37-L40.	1.6	102
39	THE SPACE MOTION OF LEO I: <i>HUBBLE SPACE TELESCOPE</i> PROPER MOTION AND IMPLIED ORBIT. Astrophysical Journal, 2013, 768, 139.	1.6	102
40	Taking care of business in a flash : constraining the time-scale for low-mass satellite quenching with ELVIS. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2039-2049.	1.6	102
41	The Orbital Histories of Magellanic Satellites Using Gaia DR2 Proper Motions. Astrophysical Journal, 2020, 893, 121.	1.6	101
42	Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3108-3120.	1.6	96
43	Where are the most ancient stars in the Milky Way?. Monthly Notices of the Royal Astronomical Society, 2018, 480, 652-668.	1.6	96
44	First Star-Forming Structures in Fuzzy Cosmic Filaments. Physical Review Letters, 2019, 123, 141301.	2.9	94
45	Dynamics of the Magellanic Clouds in a Lambda cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1560-1572.	1.6	93
46	The surprising inefficiency of dwarf satellite quenching. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1396-1404.	1.6	92
47	The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4133-4157.	1.6	91
48	M31 satellite masses compared to $\hat{\nu}\text{CDM}$ subhaloes. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3511-3519.	1.6	87
49	Under pressure: quenching star formation in low-mass satellite galaxies via stripping. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1916-1928.	1.6	87
50	The dynamical state and mass–concentration relation of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1322-1328.	1.6	85
51	Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4574-4588.	1.6	83
52	Phat ELVIS: The inevitable effect of the Milky Way's disc on its dark matter subhaloes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4409-4423.	1.6	82
53	The statistics of the subhalo abundance of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2309-2314.	1.6	80
54	The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2420-2431.	1.6	80

#	Article	IF	CITATIONS
55	A profile in FIRE: resolving the radial distributions of satellite galaxies in the Local Group with simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1471-1490.	1.6	77
56	Core Formation in Galactic Nuclei due to Recoiling Black Holes. Astrophysical Journal, 2004, 613, L37-L40.	1.6	71
57	A dark matter profile to model diverse feedback-induced core sizes of $\hat{\mathbf{b}}$ CDM haloes. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2393-2417.	1.6	71
58	The ISLAndS Project. II. The Lifetime Star Formation Histories of Six Andromeda dSphs*. Astrophysical Journal, 2017, 837, 102.	1.6	65
59	Are Halos of Collisionless Cold Dark Matter Collisionless?. Physical Review Letters, 2004, 93, 021301.	2.9	64
60	THE ACS LCID PROJECT. X. THE STAR FORMATION HISTORY OF IC 1613: REVISITING THE OVER-COOLING PROBLEM. Astrophysical Journal, 2014, 786, 44.	1.6	64
61	The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1503-1512.	1.6	64
62	SIDM on fire: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2945-2954.	1.6	61
63	The density and pseudo-phase-space density profiles of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3895-3902.	1.6	59
64	Self-consistent proto-globular cluster formation in cosmological simulations of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4315-4332.	1.6	59
65	Scalar field dark matter: helping or hurting small-scale problems in cosmology?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 289-298.	1.6	58
66	Galaxy formation with BECDM – II. Cosmic filaments and first galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2027-2044.	1.6	58
67	The globular cluster–dark matter halo connection. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3120-3130.	1.6	57
68	Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics. Monthly Notices of the Royal Astronomical Society, 2019, 490, 962-977.	1.6	54
69	Major mergers of galaxy haloes: cuspy or cored inner density profile?. Monthly Notices of the Royal Astronomical Society, 2004, 349, 1117-1129.	1.6	53
70	A dichotomy in satellite quenching around L* galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1930-1941.	1.6	52
71	Resonant sterile neutrino dark matter in the local and high- <i>z</i> Universe. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1489-1504.	1.6	51
72	The suppression of star formation on the smallest scales: what role does environment play?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4031-4039.	1.6	50

Michael Boylan-Kolchin

#	Article	IF	CITATIONS
73	No assembly required: mergers are mostly irrelevant for the growth of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 319-331.	1.6	48
74	Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 219-229.	1.6	48
75	A model for the formation of stellar associations and clusters from giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3239-3258.	1.6	48
76	The formation times and building blocks of Milky Way-mass galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 747-764.	1.6	47
77	The Little Engines That Could? Globular clusters contribute significantly to reionization-era star formation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 332-340.	1.6	46
78	Properties of resonantly produced sterile neutrino dark matter subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4346-4353.	1.6	45
79	ETHOS – an effective theory of structure formation: predictions for the high-redshift Universe – abundance of galaxies and reionization. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2886-2899.	1.6	42
80	Environmental quenching of low-mass field galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4491-4498.	1.6	42
81	Near-field limits on the role of faint galaxies in cosmic reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 443, L44-L48.	1.2	41
82	Local Group ultra-faint dwarf galaxies in the reionization era. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 469, L83-L88.	1.2	41
83	Planes of satellites around Milky Way/M31-mass galaxies in the FIRE simulations and comparisons with the Local Group. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1379-1397.	1.6	40
84	A tale of two populations: the stellar mass of central and satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1486-1499.	1.6	39
85	Discrete Effects in Stellar Feedback: Individual Supernovae, Hypernovae, and IMF Sampling in Dwarf Galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1666-1675.	1.6	38
86	Dark and luminous satellites of LMC-mass galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5348-5364.	1.6	38
87	Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H i observations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1536-1548.	1.6	37
88	From the top down and back up again: star cluster structure from hierarchical star formation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 688-702.	1.6	36
89	Evolution of giant molecular clouds across cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 492, 488-502.	1.6	36
90	THE EFFECTS OF PATCHY REIONIZATION ON SATELLITE GALAXIES OF THE MILKY WAY. Astrophysical Journal, 2012, 746, 109.	1.6	35

#	Article	IF	CITATIONS
91	COMPARING M31 AND MILKY WAY SATELLITES: THE EXTENDED STAR FORMATION HISTORIES OF ANDROMEDA II AND ANDROMEDA XVI. Astrophysical Journal, 2014, 789, 24.	1.6	35
92	On the stark difference in satellite distributions around the Milky Way and Andromeda. Monthly Notices of the Royal Astronomical Society, 2014, 439, 73-82.	1.6	34
93	Warm FIRE: simulating galaxy formation with resonant sterile neutrino dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4086-4099.	1.6	34
94	Satellite accretion on to massive galaxies with central black holes. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1227-1241.	1.6	33
95	The growth of galactic bulges through mergers in ♭ CDM haloes revisited – I. Present-day properties. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1503-1516.	1.6	33
96	UVUDF: UV Luminosity Functions at the Cosmic High Noon. Astrophysical Journal, 2017, 838, 29.	1.6	33
97	How low does it go? Too few Galactic satellites with standard reionization quenching. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4585-4595.	1.6	33
98	Are rotating planes of satellite galaxies ubiquitous?. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3840-3848.	1.6	32
99	Hot-mode accretion and the physics of thin-discÂgalaxyÂformation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5056-5073.	1.6	32
100	The mass profile of the Milky Way to the virial radius from the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3483-3493.	1.6	31
101	The central densities of Milky Way-mass galaxies in cold and self-interacting dark matter models. Monthly Notices of the Royal Astronomical Society, 2021, 507, 720-729.	1.6	31
102	Galaxies lacking dark matter produced by close encounters in a cosmological simulation. Nature Astronomy, 2022, 6, 496-502.	4.2	31
103	Extragalactic gamma-ray background radiation from dark matter annihilation. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	30
104	Linking haloes to galaxies: how many halo properties are needed?. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1405-1417.	1.6	30
105	What drives the evolution of gas kinematics in star-forming galaxies?. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5125-5137.	1.6	30
106	The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies*. Astrophysical Journal, 2017, 850, 137.	1.6	28
107	Extinguishing the FIRE: environmental quenching of satellite galaxies around Milky Way-mass hosts in simulations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5276-5295.	1.6	27
108	THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION*. Astrophysical Journal, 2016, 819, 147.	1.6	26

#	Article	IF	CITATIONS
109	Uncertain times: the redshift–time relation from cosmology and stars. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2764-2783.	1.6	26
110	Convergence of galaxy properties with merger tree temporal resolution. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3590-3603.	1.6	25
111	The mass dependence of satellite quenching in Milky Way-like haloes. Monthly Notices of the Royal Astronomical Society, 2015, 447, 698-710.	1.6	25
112	The Importance of Preventive Feedback: Inference from Observations of the Stellar Masses and Metallicities of Milky Way Dwarf Galaxies. Astrophysical Journal, 2017, 846, 66.	1.6	25
113	A relationship between stellar metallicity gradients and galaxy age in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5121-5134.	1.6	25
114	Stars made in outflows may populate the stellar halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1539-1559.	1.6	24
115	Dwarf galaxy mass estimators versus cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4786-4796.	1.6	23
116	The Local Group: the ultimate deep field. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L51-L55.	1.2	21
117	Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5538-5550.	1.6	21
118	THE CONNECTION BETWEEN THE HOST HALO AND THE SATELLITE GALAXIES OF THE MILKY WAY. Astrophysical Journal, 2016, 830, 59.	1.6	20
119	A predicted correlation between age gradient and star formation history in FIRE dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1186-1201.	1.6	20
120	A semi-analytic model comparison: testing cooling models against hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2058-2077.	1.6	19
121	Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group. Monthly Notices of the Royal Astronomical Society, 2018, 477, 480-490.	1.6	19
122	The Proper Motion of Pyxis: The First Use of Adaptive Optics in Tandem with HST on a Faint Halo Object. Astrophysical Journal, 2017, 840, 30.	1.6	18
123	Dissipative dark matter on FIRE – I. Structural and kinematic properties of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4421-4445.	1.6	18
124	A semi-analytic model comparison - gas cooling and galaxy mergers. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	1.6	17
125	DDO 216-A1: A Central Globular Cluster in a Low-luminosity Transition-type Galaxy ^{â^—} . Astrophysical Journal, 2017, 837, 54.	1.6	17
126	Push it to the limit: Local Group constraints on high-redshift stellar mass functions for <i>M</i> _{â<t< sub="">a‰¥ 10⁵ M_⊙. Monthly Notices of the Royal Astror Society, 2016, 456, 477-484.</t<>}	nomical	16

#	Article	IF	CITATIONS
127	Through a Smoother Lens: An expected absence of LCDM substructure detections from hydrodynamic and dark matter only simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1322-1332.	1.6	15
128	The galaxy–halo size relation of low-mass galaxies in FIRE. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3967-3985.	1.6	13
129	Further constraining galaxy evolution models through the size function of SDSS early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	12
130	Amplified J-factors in the Galactic Centre for velocity-dependent dark matter annihilation in FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 55-70.	1.6	12
131	Out of sight, out of mind? The impact of correlated clustering in substructure lensing. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6064-6079.	1.6	10
132	The effects of LMC-mass environments on their dwarf satellite galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2673-2688.	1.6	10
133	The universal acceleration scale from stellar feedback. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L127-L132.	1.2	9
134	The contribution of globular clusters to cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4062-4071.	1.6	9
135	From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with deep learning. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1323-1341.	1.6	9
136	The In Situ Origins of Dwarf Stellar Outskirts in FIRE-2. Astrophysical Journal, 2022, 931, 152.	1.6	9
137	Globular Clusters and Streaming Velocities: Testing the New Formation Channel in High-resolution Cosmological Simulations. Astrophysical Journal, 2021, 922, 193.	1.6	8
138	Testing DARKexp against energy and density distributions of Millennium-II halos. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 042-042.	1.9	7
139	Planes of satellites are not a problem for (just) $\hat{ m b}$ CDM. Nature Astronomy, 2021, 5, 1188-1190.	4.2	7
140	HETDEX [O iii] Emitters. I. A Spectroscopically Selected Low-redshift Population of Low-mass, Low-metallicity Galaxies. Astrophysical Journal, 2021, 916, 11.	1.6	6
141	Metallicity Distribution Function of the Eridanus II Ultra-faint Dwarf Galaxy from Hubble Space Telescope Narrowband Imaging. Astrophysical Journal, 2022, 925, 6.	1.6	6
142	Sizing from the smallest scales: the mass of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4968-4982.	1.6	6
143	Statistics of Two-point Correlation and Network Topology for Lyman Alpha Emitters at <i>z</i> â‰^ 2.67. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3
144	NGC 6822 as a Probe of Dwarf Galactic Evolution*. Astrophysical Journal, 2020, 903, 10.	1.6	3

#	Article	IF	CITATIONS
145	A virtual Universe. Nature, 2014, 509, 170-171.	13.7	1
146	Galaxy motions cause trouble for cosmology. Science, 2018, 359, 520-521.	6.0	1