
Michael J Hendzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introduction: Genome Biology. Genome, 2021, 64, v-vii.	2.0	Ο
2	Matrix metalloproteinaseâ€2 mediates ribosomal RNA transcription by cleaving nucleolar histones. FEBS Journal, 2021, 288, 6736-6751.	4.7	13
3	The solid and liquid states of chromatin. Epigenetics and Chromatin, 2021, 14, 50.	3.9	55
4	Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nature Communications, 2020, 11, 5947.	12.8	72
5	Condensed Chromatin Behaves like a Solid on the Mesoscale InÂVitro and in Living Cells. Cell, 2020, 183, 1772-1784.e13.	28.9	186
6	The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. BioEssays, 2020, 42, e1900132.	2.5	65
7	Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nature Communications, 2019, 10, 2954.	12.8	122
8	Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nature Communications, 2019, 10, 1182.	12.8	113
9	Domain analysis of PNKP–XRCC1 interactions: Influence of genetic variants of XRCC1. Journal of Biological Chemistry, 2019, 294, 520-530.	3.4	10
10	The relationship between histone posttranslational modification and DNA damage signaling and repair. International Journal of Radiation Biology, 2019, 95, 382-393.	1.8	12
11	RYBP Is a K63-Ubiquitin-Chain-Binding Protein that Inhibits Homologous Recombination Repair. Cell Reports, 2018, 22, 383-395.	6.4	23
12	Using a model comparison approach to describe the assembly pathway for histone H1. PLoS ONE, 2018, 13, e0191562.	2.5	2
13	Nucleolar Matrix Metalloproteinaseâ€⊋ Regulates rRNA Transcription. FASEB Journal, 2018, 32, lb416.	0.5	0
14	Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics. Journal of Molecular Biology, 2017, 429, 3409-3429.	4.2	30
15	Reprogramming progeria fibroblasts reâ€establishes a normal epigenetic landscape. Aging Cell, 2017, 16, 870-887.	6.7	34
16	Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity. Epigenetics, 2017, 12, 934-944.	2.7	10
17	Immunofluorescence of Histone Proteins. Methods in Molecular Biology, 2017, 1528, 165-171.	0.9	3
18	DEAD Box 1 Facilitates Removal of RNA and Homologous Recombination at DNA Double-Strand Breaks. Molecular and Cellular Biology, 2016, 36, 2794-2810.	2.3	122

#	Article	IF	CITATIONS
19	DNA Repair Foci Formation and Function at DNA Double-Strand Breaks. , 2016, , 219-237.		2
20	BCL10 is recruited to sites of DNA damage to facilitate DNA double-strand break repair. Cell Cycle, 2016, 15, 84-94.	2.6	12
21	RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity That Is Essential for DNA Double Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment. Journal of Biological Chemistry, 2016, 291, 9396-9410.	3.4	26
22	Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation. Journal of Biological Chemistry, 2016, 291, 1789-1802.	3.4	80
23	Shuttling towards a predictive assay for radiotherapy. Translational Cancer Research, 2016, 5, S742-S746.	1.0	3
24	Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. MethodsX, 2015, 2, 440-445.	1.6	145
25	Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains. Bioscience Reports, 2015, 35, .	2.4	10
26	Visualization of miniSOG Tagged DNA Repair Proteins in Combination with Electron Spectroscopic Imaging (ESI). Journal of Visualized Experiments, 2015, , .	0.3	11
27	DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair. Nucleic Acids Research, 2015, 43, 875-892.	14.5	32
28	Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting. ACS Chemical Biology, 2015, 10, 1718-1728.	3.4	50
29	Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation. Radiation Protection Dosimetry, 2015, 166, 131-136.	0.8	18
30	The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nature Cell Biology, 2015, 17, 1446-1457.	10.3	113
31	The F-act's of nuclear actin. Current Opinion in Cell Biology, 2014, 28, 84-89.	5.4	28
32	Germline Mutations in BAP1 Impair Its Function in DNA Double-Strand Break Repair. Cancer Research, 2014, 74, 4282-4294.	0.9	168
33	Conversations between chromatin modifications and DNA double strand break repair: A commentary. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 750, 1-4.	1.0	3
34	Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin. Journal of Cell Biology, 2013, 203, 57-71.	5.2	30
35	The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochemistry and Cell Biology, 2013, 91, 369-377.	2.0	68
36	A Small Molecule Inhibitor of Polycomb Repressive Complex 1 Inhibits Ubiquitin Signaling at DNA Double-strand Breaks. Journal of Biological Chemistry, 2013, 288, 26944-26954.	3.4	76

#	Article	IF	CITATIONS
37	The Differential Mobilization of Histones H3.1 and H3.3 by Herpes Simplex Virus 1 Relates Histone Dynamics to the Assembly of Viral Chromatin. PLoS Pathogens, 2013, 9, e1003695.	4.7	22
38	Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Research, 2013, 41, 4888-4900.	14.5	24
39	Kdm4b Histone Demethylase Is a DNA Damage Response Protein and Confers a Survival Advantage following Î ³ -Irradiation. Journal of Biological Chemistry, 2013, 288, 21376-21388.	3.4	130
40	Polycomb repressive complex 2 contributes to DNA double-strand break repair. Cell Cycle, 2013, 12, 2675-2683.	2.6	112
41	MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Research, 2012, 40, 2884-2897.	14.5	57
42	PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Research, 2012, 40, 10287-10301.	14.5	136
43	CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Research, 2012, 40, 5497-5510.	14.5	117
44	A requirement for polymerized actin in DNA double-strand break repair. Nucleus, 2012, 3, 384-395.	2.2	75
45	RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO Journal, 2012, 31, 1865-1878.	7.8	302
46	Proteome-wide Identification of WRN-Interacting Proteins in Untreated and Nuclease-Treated Samples. Journal of Proteome Research, 2011, 10, 1216-1227.	3.7	39
47	Conference Scene: Epigenetics Eh! The first formal meeting of the Canadian epigenetics community. Epigenomics, 2011, 3, 409-415.	2.1	1
48	Characterization and comparison of protein complexes initiated by the intracellular domain of individual Notch paralogs. Biochemical and Biophysical Research Communications, 2011, 407, 479-485.	2.1	6
49	Notch signaling as a therapeutic target for breast cancer treatment?. Breast Cancer Research, 2011, 13, 210.	5.0	47
50	Improved transfection efficiency of an aliphatic lipid substituted 2 kDa polyethylenimine is attributed to enhanced nuclear association and uptake in rat bone marrow stromal cell. Journal of Gene Medicine, 2011, 13, 46-59.	2.8	36
51	Synthesis and biological testing of novel pyridoisothiazolones as histone acetyltransferase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 3678-3689.	3.0	43
52	Polycomb group proteins in the DNA damage response: A link between radiation resistance and "stemness― Cell Cycle, 2011, 10, 883-894.	2.6	72
53	Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. Journal of Cell Science, 2011, 124, 123-132.	2.0	128
54	Phosphorylation of polynucleotide kinase/ phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage. Nucleic Acids Research, 2011, 39, 9224-9237.	14.5	61

#	Article	IF	CITATIONS
55	Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex Virus 1. Journal of Virology, 2011, 85, 13234-13252.	3.4	29
56	Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. Development (Cambridge), 2011, 138, e0207-e0207.	2.5	1
57	A Key Role for Poly(ADP-Ribose) Polymerase 3 in Ectodermal Specification and Neural Crest Development. PLoS ONE, 2011, 6, e15834.	2.5	17
58	Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Science, 2010, 8, 22.	1.7	133
59	PARP inhibition: PARP1 and beyond. Nature Reviews Cancer, 2010, 10, 293-301.	28.4	1,166
60	BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. Journal of Cell Biology, 2010, 191, 45-60.	5.2	240
61	H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Research, 2010, 38, 1780-1789.	14.5	71
62	Core Histone Hyperacetylation Impacts Cooperative Behavior and High-Affinity Binding of Histone H1 to Chromatin. Biochemistry, 2010, 49, 4420-4431.	2.5	19
63	The PAX3 Paired Domain and Homeodomain Function as a Single Binding Module In Vivo to Regulate Subnuclear Localization and Mobility by a Mechanism That Requires Base-Specific Recognition. Journal of Molecular Biology, 2010, 402, 178-193.	4.2	13
64	G2 histone methylation is required for the proper segregation of chromosomes. Journal of Cell Science, 2009, 122, 2957-2968.	2.0	33
65	A Method for Assessing Kinetic Changes of Histone H1 after Post-Translational Modifications. , 2009, ,		2
66	Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biology, 2009, 7, 86.	3.8	89
67	Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancerThis paper is one of a selection of papers published in this Special Issue, entitled The 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009. 87. 711-746.	2.0	70
68	Proteomic Investigation of Phosphorylation Sites in Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase. Journal of Proteome Research, 2009, 8, 1014-1029.	3.7	49
69	Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actinThis paper is one of a selection of papers published in this Special Issue, entitled 29th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the lournal's usual peer review process. Biochemistry and Cell Biology. 2009. 87. 283-306.	2.0	120
70	The cytotoxicity of Î ³ -secretase inhibitor I to breast cancer cells is mediated by proteasome inhibition, not by Î ³ -secretase inhibition. Breast Cancer Research, 2009, 11, R57.	5.0	60
71	Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB's 51st Annual Meeting– Epigenetics and Chromatin Dynamics, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009, 87, 189-206.	2.0	51
72	Mechanotransduction from the ECM to the genome: Are the pieces now in place?. Journal of Cellular Biochemistry, 2008, 104, 1964-1987.	2.6	123

#	Article	IF	CITATIONS
73	Epigenetics regulate centromere formation and kinetochore function. Journal of Cellular Biochemistry, 2008, 104, 2027-2039.	2.6	35
74	The γâ€H2A.X: Is it just a surrogate marker of doubleâ€strand breaks or much more?. Environmental and Molecular Mutagenesis, 2008, 49, 73-82.	2.2	94
75	MUC1 Initiates Src-CrkL-Rac1/Cdc42–Mediated Actin Cytoskeletal Protrusive Motility after Ligating Intercellular Adhesion Molecule-1. Molecular Cancer Research, 2008, 6, 555-567.	3.4	65
76	PARP1-dependent Kinetics of Recruitment of MRE11 and NBS1 Proteins to Multiple DNA Damage Sites. Journal of Biological Chemistry, 2008, 283, 1197-1208.	3.4	469
77	Catalytic Function of the PR-Set7 Histone H4 Lysine 20 Monomethyltransferase Is Essential for Mitotic Entry and Genomic Stability. Journal of Biological Chemistry, 2008, 283, 19478-19488.	3.4	137
78	Subnuclear localization and mobility are key indicators of PAX3 dysfunction in Waardenburg syndrome. Human Molecular Genetics, 2008, 17, 1825-1837.	2.9	16
79	Linker Histones Are Mobilized during Infection with Herpes Simplex Virus Type 1. Journal of Virology, 2008, 82, 8629-8646.	3.4	37
80	Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Research, 2008, 36, 6959-6976.	14.5	359
81	Ataxia Telangiectasia Mutated (ATM) Signaling Network Is Modulated by a Novel Poly(ADP-ribose)-dependent Pathway in the Early Response to DNA-damaging Agents. Journal of Biological Chemistry, 2007, 282, 16441-16453.	3.4	225
82	Modeling transcription factor binding events to DNA using a random walker/jumper representation on a 1D/2D lattice with different affinity sites. Physical Biology, 2007, 4, 256-267.	1.8	3
83	PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. Journal of Cellular Biochemistry, 2007, 100, 385-401.	2.6	100
84	Quantitative Analysis Reveals Asynchronous and more than DSB-Associated Histone H2AX Phosphorylation after Exposure to Ionizing Radiation. Radiation Research, 2006, 165, 283-292.	1.5	34
85	Epigenetic regulation of centromere formation and kinetochore functionThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2006, 84, 605-630.	2.0	14
86	The relationship between histone H3 phosphorylation and acetylation throughout the mammalian cell cycleThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochemistry and Cell Biology, 2006, 84, 640-657.	2.0	73
87	Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO Journal, 2006, 25, 222-231.	7.8	172
88	Modelling the compartmentalization of splicing factors. Journal of Theoretical Biology, 2006, 239, 298-312.	1.7	15
89	The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Current Opinion in Cell Biology, 2006, 18, 145-151.	5.4	120
90	Dynamic relocation of poly(ADP-ribose) glycohydrolase isoforms during radiation-induced DNA damage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 226-237.	4.1	40

#	Article	IF	CITATIONS
91	Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. Journal of Cell Biology, 2006, 172, 541-552.	5.2	238
92	The Transcriptional Regulator CBP Has Defined Spatial Associations within Interphase Nuclei. PLoS Computational Biology, 2006, 2, e139.	3.2	24
93	Dynamic Changes in Histone H3 Lysine 9 Methylations. Journal of Biological Chemistry, 2006, 281, 8888-8897.	3.4	72
94	Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood, 2005, 105, 4060-4069.	1.4	159
95	Poly(ADP-ribose) glycohydrolase is a component of the FMRP-associated messenger ribonucleoparticles. Biochemical Journal, 2005, 392, 499-509.	3.7	19
96	H1 Family Histones in the Nucleus. Journal of Biological Chemistry, 2005, 280, 27809-27814.	3.4	178
97	ATM-dependent DNA Damage-independent Mitotic Phosphorylation of H2AX in Normally Growing Mammalian Cells. Molecular Biology of the Cell, 2005, 16, 5013-5025.	2.1	220
98	Methylation of MRE11 Regulates its Nuclear Compartmentalization. Cell Cycle, 2005, 4, 981-989.	2.6	70
99	Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends in Molecular Medicine, 2005, 11, 456-463.	6.7	92
100	Using quantitative imaging microscopy to define the target substrate specificities of histone post-translational-modifying enzymes. Methods, 2005, 36, 351-361.	3.8	14
101	The CD20 Calcium Channel Is Localized to Microvilli and Constitutively Associated with Membrane Rafts. Journal of Biological Chemistry, 2004, 279, 19893-19901.	3.4	59
102	The C-terminal Domain Is the Primary Determinant of Histone H1 Binding to Chromatin in Vivo. Journal of Biological Chemistry, 2004, 279, 20028-20034.	3.4	198
103	F-actin-dependent Insolubility of Chromatin-modifying Components. Journal of Biological Chemistry, 2004, 279, 25017-25023.	3.4	36
104	Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events. Bulletin of Mathematical Biology, 2004, 66, 1515-1545.	1.9	52
105	Distinct dynamics and distribution of histone methyl-lysine derivatives in mouse development. Developmental Biology, 2004, 276, 337-351.	2.0	79
106	Quantification of Protein–Protein and Protein–DNA Interactions In Vivo, Using Fluorescence Recovery after Photobleaching. Methods in Enzymology, 2003, 375, 415-442.	1.0	29
107	Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods, 2003, 29, 14-28.	3.8	173
108	Quantitative Analysis of CBP- and P300-Induced Histone Acetylations In Vivo Using Native Chromatin. Molecular and Cellular Biology, 2003, 23, 7611-7627.	2.3	70

#	Article	IF	CITATIONS
109	RHAMM Is a Centrosomal Protein That Interacts with Dynein and Maintains Spindle Pole Stability. Molecular Biology of the Cell, 2003, 14, 2262-2276.	2.1	167
110	Enzymatic Activity Associated with Class II HDACs Is Dependent on a Multiprotein Complex Containing HDAC3 and SMRT/N-CoR. Molecular Cell, 2002, 9, 45-57.	9.7	663
111	Compartmentalization of regulatory proteins in the cell nucleus. Journal of Steroid Biochemistry and Molecular Biology, 2001, 76, 9-21.	2.5	41
112	The integration of tissue structure and nuclear function. Biochemistry and Cell Biology, 2001, 79, 267-274.	2.0	12
113	CBP, a transcriptional coactivator and acetyltransferase. Biochemistry and Cell Biology, 2001, 79, 253-266.	2.0	103
114	Regulation of Global Acetylation in Mitosis through Loss of Histone Acetyltransferases and Deacetylases from Chromatin. Journal of Biological Chemistry, 2001, 276, 38307-38319.	3.4	189
115	Human HDAC7 Histone Deacetylase Activity Is Associated with HDAC3in Vivo. Journal of Biological Chemistry, 2001, 276, 35826-35835.	3.4	192
116	Association of Human DEAD Box Protein DDX1 with a Cleavage Stimulation Factor Involved in 3′-End Processing of Pre-mRNA. Molecular Biology of the Cell, 2001, 12, 3046-3059.	2.1	72
117	The Transcription Coactivator Cbp Is a Dynamic Component of the Promyelocytic Leukemia Nuclear Body. Journal of Cell Biology, 2001, 152, 1099-1106.	5.2	141
118	CBP, a transcriptional coactivator and acetyltransferase. Biochemistry and Cell Biology, 2001, 79, 253-266.	2.0	23
119	The integration of tissue structure and nuclear function. Biochemistry and Cell Biology, 2001, 79, 267-274.	2.0	6
120	Rapid exchange of histone H1.1 on chromatin in living human cells. Nature, 2000, 408, 873-876.	27.8	397
121	Reduced Mobility of the Alternate Splicing Factor (Asf) through the Nucleoplasm and Steady State Speckle Compartments. Journal of Cell Biology, 2000, 150, 41-52.	5.2	168
122	Promyelocytic Leukemia (Pml) Nuclear Bodies Are Protein Structures That Do Not Accumulate RNA. Journal of Cell Biology, 2000, 148, 283-292.	5.2	245
123	Direct Visualization of a Protein Nuclear Architecture. Molecular Biology of the Cell, 1999, 10, 2051-2062.	2.1	62
124	A New Family of Human Histone Deacetylases Related toSaccharomyces cerevisiae HDA1p. Journal of Biological Chemistry, 1999, 274, 11713-11720.	3.4	222
125	Increased Ser-10 Phosphorylation of Histone H3 in Mitogen-stimulated and Oncogene-transformed Mouse Fibroblasts. Journal of Biological Chemistry, 1999, 274, 24914-24920.	3.4	248
126	Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11883-11888.	7.1	105

#	Article	IF	CITATIONS
127	Reduction of histone acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. Biochemistry and Cell Biology, 1999, 77, 400.	2.0	1
128	Electron Spectroscopic Imaging of Chromatin. Methods, 1999, 17, 188-200.	3.8	53
129	Chromatin Condensation Is Not Associated with Apoptosis. Journal of Biological Chemistry, 1998, 273, 24470-24478.	3.4	118
130	Organization of Highly Acetylated Chromatin around Sites of Heterogeneous Nuclear RNA Accumulation. Molecular Biology of the Cell, 1998, 9, 2491-2507.	2.1	90
131	Fixation-dependent organization of core histones following DNA fluorescent in situ hybridization. Chromosoma, 1997, 106, 114-123.	2.2	25
132	Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 1997, 106, 348-360.	2.2	1,679
133	Changes in the nuclear matrix of chicken erythrocytes that accompany maturation. Biochemical Journal, 1996, 320, 257-265.	3.7	25
134	Topoisomerase II alpha is associated with the mammalian centromere in a cell cycle- and species-specific manner and is required for proper centromere/kinetochore structure Journal of Cell Biology, 1996, 134, 1097-1107.	5.2	133
135	RNA polymerase II transcription and the functional organization of the mammalian cell nucleus. Chromosoma, 1995, 103, 509-516.	2.2	17
136	RNA polymerase II transcription and the functional organization of the mammalian cell nucleus. Chromosoma, 1995, 103, 509-516.	2.2	0
137	Multiple functions of dynamic histone acetylation. Journal of Cellular Biochemistry, 1994, 55, 98-105.	2.6	75
138	Nuclear matrix proteins bind very tightly to specific regions of the chicken histone H5 gene. Biochemistry and Cell Biology, 1992, 70, 822-829.	2.0	3
139	Acetylation and methylation of histones H3 and H4 in chicken immature erythrocytes are not directly coupled. Biochemical and Biophysical Research Communications, 1992, 185, 414-419.	2.1	10
140	Nuclear distribution of histone deacetylase: a marker enzyme for the internal nuclear matrix. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1130, 307-313.	2.4	24
141	Heterogeneity of Organization of Subcompartments in DSB Repair Foci. Frontiers in Genetics, 0, 13, .	2.3	2