
William Colledge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptome profiling of kisspeptin neurons from the mouse arcuate nucleus reveals new mechanisms in estrogenic control of fertility. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
2	Sexually Dimorphic Neurosteroid Synthesis Regulates Neuronal Activity in the Murine Brain. Journal of Neuroscience, 2021, 41, 9177-9191.	3.6	11
3	Optogenetic stimulation of kisspeptin neurones within the posterodorsal medial amygdala increases luteinising hormone pulse frequency in female mice. Journal of Neuroendocrinology, 2020, 32, e12823.	2.6	27
4	Hypermethylation and reduced expression of Gtl2, Rian and Mirg at the Dlk1-Dio3 imprinted locus as a marker for poor developmental potential of mouse embryonic stem cells. Stem Cell Research, 2020, 48, 101931.	0.7	3
5	Sexually dimorphic gene expression and neurite sensitivity to estradiol in fetal arcuate Kiss1 cells. Journal of Endocrinology, 2020, 244, 273-283.	2.6	4
6	Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS ONE, 2019, 14, e0213927.	2.5	47
7	Female sexual behavior in mice is controlled by kisspeptin neurons. Nature Communications, 2018, 9, 400.	12.8	116
8	Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. Journal of Neuroendocrinology, 2018, 30, e12572.	2.6	61
9	Kv4.2 channel activity controls intrinsic firing dynamics of arcuate kisspeptin neurons. Journal of Physiology, 2018, 596, 885-899.	2.9	20
10	Editorial: The Multiple Facets of Kisspeptin Activity in Biological Systems. Frontiers in Endocrinology, 2018, 9, 727.	3.5	11
11	Sex―and sub regionâ€dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. Journal of Neuroendocrinology, 2018, 30, e12660.	2.6	29
12	The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic–Pituitary–Gonadal Axis. Frontiers in Endocrinology, 2018, 9, 188.	3.5	45
13	Transforming growth factor Î ² receptor inhibition prevents ventricular fibrosis in a mouse model of progressive cardiac conduction disease. Cardiovascular Research, 2017, 113, 464-474.	3.8	26
14	Definition of the hypothalamic GnRH pulse generator in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10216-E10223.	7.1	267
15	Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo. PLoS ONE, 2017, 12, e0176821.	2.5	35
16	Mfsd14a (Hiat1) gene disruption causes globozoospermia and infertility in male mice. Reproduction, 2016, 152, 91-99.	2.6	33
17	Visualisation of <i>Kiss1</i> Neurone Distribution Using a Kiss1â€ <scp>CRE</scp> Transgenic Mouse. Journal of Neuroendocrinology, 2016, 28, .	2.6	70
18	Kiss1 mutant placentas show normal structure and function inÂtheÂmouse. Placenta, 2015, 36, 52-58.	1.5	18

#	Article	IF	CITATIONS
19	Insulin-like peptide 5 is an orexigenic gastrointestinal hormone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11133-11138.	7.1	120
20	Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. Journal of Clinical Investigation, 2014, 124, 2550-2559.	8.2	104
21	Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. Journal of Clinical Investigation, 2014, 124, 3678-3678.	8.2	5
22	Model Systems for Studying Kisspeptin Signalling: Mice and Cells. Advances in Experimental Medicine and Biology, 2013, 784, 481-503.	1.6	9
23	How Much Kissing Is Required for Fertility?. Endocrinology, 2013, 154, 2573-2574.	2.8	0
24	Does Kisspeptin Signaling have a Role in the Testes?. Frontiers in Endocrinology, 2013, 4, 198.	3.5	51
25	Voltage dependence of the Ca ²⁺ -activated K ⁺ channel K _{Ca} 3.1 in human erythroleukemia cells. American Journal of Physiology - Cell Physiology, 2013, 304, C858-C872.	4.6	9
26	Defending Sperm Function. PLoS Genetics, 2013, 9, e1003889.	3.5	7
27	The neuroendocrine regulation of the mammalian reproductive axis. Experimental Physiology, 2013, 98, 1519-1521.	2.0	3
28	Kisspeptin-GPR54 Signaling in Mouse NO-Synthesizing Neurons Participates in the Hypothalamic Control of Ovulation. Journal of Neuroscience, 2012, 32, 932-945.	3.6	103
29	Characterization and functional study of a cluster of four highly conserved orphan adhesionâ€GPCR in mouse. Developmental Dynamics, 2012, 241, 1591-1602.	1.8	52
30	Mouse models of cystic fibrosis: Phenotypic analysis and research applications. Journal of Cystic Fibrosis, 2011, 10, S152-S171.	0.7	185
31	Mll5 Is Required for Normal Spermatogenesis. PLoS ONE, 2011, 6, e27127.	2.5	50
32	Propranolol enhances cell cycle-related gene expression in pressure overloaded hearts. British Journal of Pharmacology, 2011, 164, 1917-1928.	5.4	10
33	Hyperalgesic Activity of Kisspeptin in Mice. Molecular Pain, 2011, 7, 1744-8069-7-90.	2.1	15
34	The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent. BMC Genomics, 2011, 12, 209.	2.8	13
35	Kisspeptin neurons coâ€express metâ€enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. Journal of Comparative Neurology, 2011, 519, 3456-3469.	1.6	63
36	Frequency-Dependent Recruitment of Fast Amino Acid and Slow Neuropeptide Neurotransmitter Release Controls Gonadotropin-Releasing Hormone Neuron Excitability. Journal of Neuroscience, 2011, 31, 2421-2430.	3.6	108

#	Article	IF	CITATIONS
37	Gpr54â^'/â^' mice show more pronounced defects in spermatogenesis than Kiss1â^'/â^' mice and improved spermatogenesis with age when exposed to dietary phytoestrogens. Reproduction, 2011, 141, 357-366.	2.6	23
38	Inotropic Action of the Puberty Hormone Kisspeptin in Rat, Mouse and Human: Cardiovascular Distribution and Characteristics of the Kisspeptin Receptor. PLoS ONE, 2011, 6, e27601.	2.5	24
39	Acetylcholine induces cytosolic Ca2+ mobilization in isolated distal colonic crypts from normal and cystic fibrosis mice. Journal of Pharmacy and Pharmacology, 2010, 53, 371-377.	2.4	2
40	The Orphan Adhesion-GPCR GPR126 Is Required for Embryonic Development in the Mouse. PLoS ONE, 2010, 5, e14047.	2.5	78
41	International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin Receptor Nomenclature, Distribution, and Function. Pharmacological Reviews, 2010, 62, 565-578.	16.0	82
42	The Role of Kisspeptin Signaling in Reproduction. Physiology, 2010, 25, 207-217.	3.1	117
43	Kisspeptin Signaling Is Required for Peripheral But Not Central Stimulation of Gonadotropin-Releasing Hormone Neurons by NMDA. Journal of Neuroscience, 2010, 30, 8581-8590.	3.6	57
44	Distribution and Postnatal Development of Gpr54 Gene Expression in Mouse Brain and Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2010, 151, 312-321.	2.8	266
45	The role of kisspeptin signalling in the regulation of the GnRH-gonadotrophin ovarian axis in mice. Annales D'Endocrinologie, 2010, 71, 198-200.	1.4	7
46	Mouse models to study the central regulation of puberty. Molecular and Cellular Endocrinology, 2010, 324, 12-20.	3.2	18
47	Variable Nav1.5 Protein Expression from the Wild-Type Allele Correlates with the Penetrance of Cardiac Conduction Disease in the Scn5a+/â^ Mouse Model. PLoS ONE, 2010, 5, e9298.	2.5	67
48	Epithelial IgG and its relationship to the loss of F508 in the common mutant form of the cystic fibrosis transmembrane conductance regulator. FEBS Letters, 2009, 583, 2493-2499.	2.8	4
49	Ducts isolated from the pancreas of CFTR-null mice secrete fluid. Pflugers Archiv European Journal of Physiology, 2009, 459, 203-214.	2.8	26
50	Distribution of Kisspeptin Neurones in the Adult Female Mouse Brain. Journal of Neuroendocrinology, 2009, 21, 673-682.	2.6	271
51	Kisspeptins and GnRH neuronal signalling. Trends in Endocrinology and Metabolism, 2009, 20, 115-121.	7.1	120
52	Transgenic mouse models to study Gpr54/kisspeptin physiology. Peptides, 2009, 30, 34-41.	2.4	66
53	Physiological consequences of the <i>P2328S</i> mutation in the ryanodine receptor (<i>RyR2</i>) gene in genetically modified murine hearts. Acta Physiologica, 2008, 194, 123-140.	3.8	48
54	Defective formation of PKA/CnA-dependent annexin 2–S100A10/CFTR complex in ΔF508 cystic fibrosis cells. Cellular Signalling, 2008, 20, 1073-1083.	3.6	12

#	Article	IF	CITATIONS
55	Kisspeptin–CPR54 Signaling Is Essential for Preovulatory Gonadotropin-Releasing Hormone Neuron Activation and the Luteinizing Hormone Surge. Journal of Neuroscience, 2008, 28, 8691-8697.	3.6	410
56	Kisspeptin Can Stimulate Gonadotropin-Releasing Hormone (GnRH) Release by a Direct Action at GnRH Nerve Terminals. Endocrinology, 2008, 149, 3926-3932.	2.8	240
57	Synthetic chemerin-derived peptides suppress inflammation through ChemR23. Journal of Experimental Medicine, 2008, 205, 767-775.	8.5	317
58	GPR54 and Kisspeptins. , 2008, 46, 117-143.		50
59	Comparison of Protein Transduction Domains in Mediating Cell Delivery of a Secreted CRE Protein. Biochemistry, 2008, 47, 1157-1166.	2.5	12
60	Splenomegaly and Modified Erythropoiesis in KLF13–/– Mice. Journal of Biological Chemistry, 2008, 283, 11897-11904.	3.4	36
61	Intra-amniotic Delivery of CFTR-expressing Adenovirus Does Not Reverse Cystic Fibrosis Phenotype in Inbred CFTR-knockout Mice. Molecular Therapy, 2008, 16, 819-824.	8.2	31
62	Hypogonadotropic hypogonadism in mice lacking a functional <i>Kiss1</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10714-10719.	7.1	522
63	Effects of flecainide and quinidine on arrhythmogenic properties ofScn5a+Ĵî" murine hearts modelling long QT syndrome 3. Journal of Physiology, 2007, 578, 69-84.	2.9	36
64	Effects of L-type Ca2+channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in theScn5agene modelling human long QT syndrome 3. Journal of Physiology, 2007, 578, 85-97.	2.9	57
65	Effects of flecainide and quinidine on arrhythmogenic properties ofScn5a+/â^' murine hearts modelling the Brugada syndrome. Journal of Physiology, 2007, 581, 255-275.	2.9	54
66	Arrhythmogenic mechanisms in the isolated perfused hypokalaemic murine heart. Acta Physiologica, 2007, 189, 33-46.	3.8	64
67	Involvement of the Anion Exchanger SLC26A6 in Prostaglandin E2- but not Forskolin-Stimulated Duodenal HCO3â^' Secretion. Gastroenterology, 2006, 130, 349-358.	1.3	76
68	Cellular and animal models of cystic fibrosis, tools for drug discovery. Drug Discovery Today: Disease Models, 2006, 3, 251-259.	1.2	8
69	Paced Electrogram Fractionation Analysis of Arrhythmogenic Tendency in DeltaKPQ Scn5a Mice. Journal of Cardiovascular Electrophysiology, 2006, .	1.7	0
70	Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel geneScn5a. Journal of Physiology, 2005, 567, 387-400.	2.9	107
71	Paced Electrogram Fractionation Analysis of Arrhythmogenic Tendency in ΔKPQ <i>Scn5a</i> Mice. Journal of Cardiovascular Electrophysiology, 2005, 16, 1329-1340.	1.7	61
72	Enhancement of gene delivery to human airway epithelial cellsin vitro using a peptide from the polyoma virus protein VP1. Journal of Gene Medicine, 2005, 7, 759-770.	2.8	10

#	Article	IF	CITATIONS
73	X-ray microanalysis of airway surface liquid in the mouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L874-L878.	2.9	13
74	The Link Between Nutritional Status and Insulin Sensitivity Is Dependent on the Adipocyte-Specific Peroxisome Proliferator-Activated Receptor-Â2 Isoform. Diabetes, 2005, 54, 1706-1716.	0.6	157
75	Mouse Model of SCN5A -Linked Hereditary Lenègre's Disease. Circulation, 2005, 111, 1738-1746.	1.6	199
76	Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1761-1766.	7.1	1,047
77	Impaired Impulse Propagation in Scn5a -Knockout Mice. Circulation, 2005, 112, 1927-1935.	1.6	151
78	Null Mutation of the Lmo4 Gene or a Combined Null Mutation of the Lmo1 / Lmo3 Genes Causes Perinatal Lethality, and Lmo4 Controls Neural Tube Development in Mice. Molecular and Cellular Biology, 2004, 24, 2063-2073.	2.3	76
79	Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3-36. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4695-4700.	7.1	345
80	The Cyclin A1-CDK2 Complex Regulates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2004, 24, 8917-8928.	2.3	106
81	Cyclin A1 protein shows haplo-insufficiency for normal fertility in male mice. Reproduction, 2004, 127, 503-511.	2.6	32
82	Innate BALB/c Enteric Epithelial Responses to <i>Trichinella spiralis</i> : Inducible Expression of a Novel Goblet Cell Lectin, Intelectin-2, and Its Natural Deletion in C57BL/10 Mice. Journal of Immunology, 2004, 173, 1894-1901.	0.8	122
83	A LacZ-based transgenic mouse for detection of somatic gene repair events in vivo. Gene Therapy, 2004, 11, 1351-1357.	4.5	12
84	Markedly reduced effects of (â^')-isoprenaline but not of (â^')-CGP12177 and unchanged affinity of β -blockers at Gly389-β 1 -adrenoceptors compared to Arg389-β 1 -adrenoceptors. British Journal of Pharmacology, 2004, 142, 51-56.	5.4	53
85	Binding of (-)-[3 H]-CCP12177 at two sites in recombinant human � 1 -adrenoceptors and interaction with �-blockers. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 525-532.	3.0	42
86	Aspartate138 is required for the high-affinity ligand binding site but not for the low-affinity binding site of the ?1-adrenoceptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 223-6.	3.0	10
87	GPR54 and puberty. Trends in Endocrinology and Metabolism, 2004, 15, 448-453.	7.1	64
88	Intrinsic sympathomimetic activity of (-)-pindolol mediated through a (-)-propranolol-resistant site of the ?1-adrenoceptor in human atrium and recombinant receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 368, 496-503.	3.0	37
89	stella Is a Maternal Effect Gene Required for Normal Early Development in Mice. Current Biology, 2003, 13, 2110-2117.	3.9	352
90	A comparison of gene repair strategies in cell culture using a lacZ reporter system. Gene Therapy, 2003, 10, 1584-1591.	4.5	43

#	Article	IF	CITATIONS
91	A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene Therapy, 2003, 10, 1654-1662.	4.5	191
92	Expression and Regulation of the Na + â€K + â€2Cl â^' Cotransporter NKCC1 in the Normal and CFTRâ€Deficient Murine Colon. Journal of Physiology, 2003, 549, 525-536.	2.9	34
93	The <i>GPR54</i> Gene as a Regulator of Puberty. New England Journal of Medicine, 2003, 349, 1614-1627.	27.0	2,297
94	ΔF508-CFTR Causes Constitutive NF-κB Activation through an ER-Overload Response in Cystic Fibrosis Lungs. Biological Chemistry, 2002, 383, 271-82.	2.5	63
95	Murine model of autosomal dominant retinitis pigmentosa generated by targeted deletion at codon 307 of the rds-peripherin gene. Human Molecular Genetics, 2002, 11, 1005-1016.	2.9	41
96	Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6210-6215.	7.1	360
97	Optimisation of real-time quantitative RT-PCR for the evaluation of non-viral mediated gene transfer to the airways. Gene Therapy, 2002, 9, 1312-1320.	4.5	38
98	Aminoglycoside suppression of a premature stop mutation in a Cftr–/– mouse carrying a human CFTR-G542X transgene. Journal of Molecular Medicine, 2002, 80, 595-604.	3.9	160
99	Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. European Respiratory Journal, 2001, 17, 27-35.	6.7	53
100	Effect of acute saline volume expansion in the anaesthetised ?F508 cystic fibrosis mouse. Pflugers Archiv European Journal of Physiology, 2001, 443, S17-S21.	2.8	0
101	Enhanced gene delivery to human airway epithelial cells using an integrin-targeting lipoplex. Journal of Gene Medicine, 2001, 3, 125-134.	2.8	37
102	Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Therapy, 2001, 8, 1380-1386.	4.5	109
103	Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor1α promoter. Gene Therapy, 2001, 8, 1539-1546.	4.5	203
104	Steroid hormone enhancement of gene delivery to a human airway epithelial cell line in vitro and mouse airways in vivo. Gene Therapy, 2001, 8, 1562-1571.	4.5	27
105	Sodium channel blockers and uridine triphosphate: effects on nasal potential difference in cystic fibrosis mice. European Respiratory Journal, 2000, 15, 146-150.	6.7	17
106	A murine tracheal culture system to investigate parameters affecting gene therapy for cystic fibrosis. Gene Therapy, 2000, 7, 612-618.	4.5	4
107	Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Therapy, 2000, 7, 1156-1165.	4.5	226
108	Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature, 2000, 404, 95-99.	27.8	547

#	Article	IF	CITATIONS
109	Mos activates MAP kinase in mouse oocytes through two opposite pathways. EMBO Journal, 2000, 19, 6065-6074.	7.8	90
110	Murine CFTR Channel and its Role in Regulatory Volume Decrease of Small Intestine Crypts. Cellular Physiology and Biochemistry, 2000, 10, 321-328.	1.6	28
111	Genistein activates CFTR-mediated Cl ^{â^'} secretion in the murine trachea and colon. American Journal of Physiology - Cell Physiology, 2000, 279, C383-C392.	4.6	30
112	A retroviral Gene Trap Insertion into the Histone 3.3A Gene Causes Partial Neonatal Lethality, Stunted Growth, Neuromuscular Deficits and Male Sub-fertility in Transgenic Mice. Human Molecular Genetics, 1999, 8, 2489-2495.	2.9	103
113	Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO Journal, 1998, 17, 1860-1870.	7.8	229
114	Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature, 1998, 393, 79-82.	27.8	323
115	Mutation analysis of the c-mos proto-oncogene in human ovarian teratomas. British Journal of Cancer, 1998, 77, 1642-1644.	6.4	9
116	Crouzon-like craniofacial dysmorphology in the mouse is caused by an insertional mutation at theFgf3/Fgf4 locus. Developmental Dynamics, 1998, 212, 242-249.	1.8	66
117	Disruption of murine α-enolase by a retroviral gene trap results in early embryonic lethality. Developmental Dynamics, 1998, 212, 284-292.	1.8	11
118	Involvement of Brca2 in DNA Repair. Molecular Cell, 1998, 1, 347-357.	9.7	568
119	Increased Contact Time Improves Adenovirus-Mediated CFTR Gene Transfer to Nasal Epithelium of CF Mice. Human Gene Therapy, 1997, 8, 671-680.	2.7	22
120	Co-ordinate regulation of the cystic fibrosis and multidrug resistance genes in cystic fibrosis knockout mice. Human Molecular Genetics, 1997, 6, 527-537.	2.9	37
121	Gene therapy for cystic fibrosis. Lancet, The, 1997, 349, 1249.	13.7	6
122	A functional CFTR protein is required for mouse intestinal cAMPâ€, cGMP―and Ca ²⁺ â€dependent HCO ₃ ^{â^'} secretion. Journal of Physiology, 1997, 505, 411-423.	2.9	235
123	A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Therapy, 1997, 4, 199-209.	4.5	255
124	A second dose of a CFTR cDNA–liposome complex is as effective as the first dose in restoring cAMP-dependent chloride secretion to null CF mice trachea. Gene Therapy, 1997, 4, 1231-1236.	4.5	34
125	Complementation of null CF mice with a human CFTR YAC transgene. EMBO Journal, 1997, 16, 4238-4249.	7.8	76
126	Normotensive blood pressure in mice with a disrupted renin Ren-1d gene. Transgenic Research, 1997, 6, 191-196.	2.4	13

#	Article	IF	CITATIONS
127	The intrinsic Cl - conductance of mouse kidney cortex brush-border membrane vesicles is not related to CFTR. Pflugers Archiv European Journal of Physiology, 1997, 434, 575-580.	2.8	7
128	Cystic fibrosis transmembrane conductance regulator mediates the cyclic adenosine monophosphate-induced fluid secretion but not the inhibition of resorption in mouse gallbladder epithelium. Hepatology, 1997, 25, 270-277.	7.3	36
129	Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice Proceedings of the United States of America, 1995, 92, 9038-9041.	7.1	66
130	The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study Journal of Physiology, 1995, 482, 449-454.	2.9	65
131	Cystic fibrosis gene therapy. British Medical Bulletin, 1995, 51, 82-90.	6.9	14
132	Manipulating the mouse embryo (2nd edn). Trends in Genetics, 1995, 11, 422.	6.7	27
133	Initial culture behaviour of rat blastocysts on selected feeder cell lines. Molecular Reproduction and Development, 1995, 40, 311-324.	2.0	31
134	Generation of a pseudogene during retroviral infection. Mammalian Genome, 1995, 6, 90-95.	2.2	23
135	Calcium-activated chloride conductance is not increased in pancreatic duct cells of CF mice. Pflugers Archiv European Journal of Physiology, 1995, 430, 26-33.	2.8	44
136	Generation and characterization of a ΔF508 cystic fibrosis mouse model. Nature Genetics, 1995, 10, 445-452.	21.4	215
137	The challenge of fetal gene therapy. Nature Medicine, 1995, 1, 864-866.	30.7	81
138	Two pathways control MAP kinase activation during mouse oocyte maturation: One involving mos but not Raf-1, and one releasing the inhibitory effect of protein phosphatases. Biology of the Cell, 1995, 84, 84-84.	2.0	0
139	The <i>Hox11</i> gene is essential for cell survival during spleen development. Development (Cambridge), 1995, 121, 2909-2915.	2.5	147
140	Ion-transporting activity in the murine colonic epithelium of normal animals and animals with cystic fibrosis. Pflugers Archiv European Journal of Physiology, 1994, 428, 508-515.	2.8	58
141	Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature, 1994, 370, 65-68.	27.8	467
142	The Oncogenic Cysteine-rich LIM domain protein Rbtn2 is essential for erythroid development. Cell, 1994, 78, 45-57.	28.9	582
143	Cystic fibrosis gene therapy. Current Opinion in Genetics and Development, 1994, 4, 466-471.	3.3	28
144	Chloride secretion in response to guanylin in colonic epithelia from normal and transgenic cystic fibrosis mice. British Journal of Pharmacology, 1994, 112, 31-36.	5.4	95

#	Article	IF	CITATIONS
145	Inactivation of the murine cftr gene abolishes cAMP-mediated but not Ca2+-mediated secretagogue-induced volume decrease in small-intestinal crypts. Pflugers Archiv European Journal of Physiology, 1993, 425, 434-438.	2.8	39
146	Production of a severe cystic fibrosis mutation in mice by gene targeting. Nature Genetics, 1993, 4, 35-41.	21.4	242
147	Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature, 1993, 362, 250-255.	27.8	507
148	Cystic Fibrosis Current topics (vol. 1). Trends in Genetics, 1993, 9, 332.	6.7	1
149	Cystic fibrosis mouse with intestinal obstruction. Lancet, The, 1992, 340, 680.	13.7	69
150	Disruption of the cystic fibrosis transmembrane conductance regulator gene in embryonic stem cells by gene targeting. Transgenic Research, 1992, 1, 177-181.	2.4	18
151	Search of the 5′ untranslated region of the human cardiac actin gene for segments controlling translation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1087, 39-48.	2.4	Ο
152	Mechanisms of Transformation by Protein-Tyrosine Kinases. , 1988, 231, 475-480.		2
153	Abelson-transformed fibroblasts contain nuclear phosphotyrosyl-proteins which preferentially bind to murine DNA. Nature, 1987, 325, 552-554.	27.8	31
154	A comparison of topoisomerase I activity in normal and transformed cells. Bioscience Reports, 1986, 6, 301-307.	2.4	4