Wenwei Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990346/publications.pdf

Version: 2024-02-01

201674 233421 4,070 47 27 45 citations h-index g-index papers 55 55 55 3358 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association. Journal of Chemical Theory and Computation, 2014, 10, 5113-5124.	5.3	564
2	Phosphorylation of the <scp>FUS</scp> lowâ€complexity domain disrupts phase separation, aggregation, and toxicity. EMBO Journal, 2017, 36, 2951-2967.	7.8	544
3	Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Computational Biology, 2018, 14, e1005941.	3.2	427
4	Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9929-9934.	7.1	283
5	Determination of reaction coordinates via locally scaled diffusion map. Journal of Chemical Physics, 2011, 134, 124116.	3.0	212
6	Temperature-Controlled Liquid–Liquid Phase Separation of Disordered Proteins. ACS Central Science, 2019, 5, 821-830.	11.3	199
7	Discovering Mountain Passes via Torchlight: Methods for the Definition of Reaction Coordinates and Pathways in Complex Macromolecular Reactions. Annual Review of Physical Chemistry, 2013, 64, 295-316.	10.8	177
8	Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods. Journal of the American Chemical Society, 2016, 138, 11714-11726.	13.7	171
9	Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations. Journal of Physical Chemistry B, 2020, 124, 11671-11679.	2.6	127
10	Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment. Journal of the American Chemical Society, 2016, 138, 11702-11713.	13.7	121
11	Simulation methods for liquid–liquid phase separation of disordered proteins. Current Opinion in Chemical Engineering, 2019, 23, 92-98.	7.8	89
12	Inferring properties of disordered chains from FRET transfer efficiencies. Journal of Chemical Physics, 2018, 148, 123329.	3.0	84
13	Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations. Nucleic Acids Research, 2020, 48, 12593-12603.	14.5	83
14	Rapid Exploration of Configuration Space with Diffusion-Map-Directed Molecular Dynamics. Journal of Physical Chemistry B, 2013, 117, 12769-12776.	2.6	71
15	Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins. Journal of Physical Chemistry Letters, 2020, 11, 3408-3415.	4.6	70
16	Evolution of All-Atom Protein Force Fields to Improve Local and Global Properties. Journal of Physical Chemistry Letters, 2019, 10, 2227-2234.	4.6	65
17	An Extended Guinier Analysis for Intrinsically Disordered Proteins. Journal of Molecular Biology, 2018, 430, 2540-2553.	4.2	64
18	Polymer effects modulate binding affinities in disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19506-19512.	7.1	63

#	Article	IF	Citations
19	Kinesin Is an Evolutionarily Fine-Tuned Molecular Ratchet-and-Pawl Device of Decisively Locked Direction. Biophysical Journal, 2007, 93, 3363-3372.	0.5	51
20	Accurate Transfer Efficiencies, Distance Distributions, and Ensembles of Unfolded and Intrinsically Disordered Proteins From Single-Molecule FRET. Methods in Enzymology, 2018, 611, 287-325.	1.0	46
21	Polymer reversal rate calculated via locally scaled diffusion map. Journal of Chemical Physics, 2011, 134, 144109.	3.0	44
22	Delineation of Folding Pathways of a \hat{l}^2 -Sheet Miniprotein. Journal of Physical Chemistry B, 2011, 115, 13065-13074.	2.6	41
23	Dependence of Internal Friction on Folding Mechanism. Journal of the American Chemical Society, 2015, 137, 3283-3290.	13.7	41
24	A tripodal peptide ligand for asymmetric Rh(<scp>ii</scp>) catalysis highlights unique features of on-bead catalyst development. Chemical Science, 2014, 5, 1401-1407.	7.4	40
25	A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Structure, 2019, 27, 229-240.e4.	3.3	39
26	Comment on "Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water― Science, 2018, 361, .	12.6	36
27	Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2021, 12, 6684-6691.	4.6	32
28	Reduction of All-Atom Protein Folding Dynamics to One-Dimensional Diffusion. Journal of Physical Chemistry B, 2015, 119, 15247-15255.	2.6	31
29	Diffusion of a disordered protein on its folded ligand. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
30	Using a sequence-specific coarse-grained model for studying protein liquid–liquid phase separation. Methods in Enzymology, 2021, 646, 1-17.	1.0	27
31	Modeling Motility of the Kinesin Dimer from Molecular Properties of Individual Monomers ^{â€} . Biochemistry, 2008, 47, 4733-4742.	2.5	25
32	The intrinsic load-resisting capacity of kinesin. Physical Biology, 2009, 6, 036002.	1.8	23
33	Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations. Journal of Chemical Theory and Computation, 2015, 11, 5543-5553.	5.3	23
34	Molecular recognition of DNA by ligands: Roughness and complexity of the free energy profile. Journal of Chemical Physics, 2013, 139, 145102.	3.0	20
35	Origin of Internal Friction in Disordered Proteins Depends on Solvent Quality. Journal of Physical Chemistry B, 2018, 122, 11478-11487.	2.6	19
36	Modulation of Folding Internal Friction by Local and Global Barrier Heights. Journal of Physical Chemistry Letters, 2016, 7, 1028-1034.	4.6	15

#	Article	IF	CITATIONS
37	A comparative analysis of clustering algorithms: O2 migration in truncated hemoglobin I from transition networks. Journal of Chemical Physics, 2015, 142, 025103.	3.0	10
38	Quantitative NMR Study of Insulin-Degrading Enzyme Using Amyloid- \hat{l}^2 and HIV-1 p6 Elucidates Its Chaperone Activity. Biochemistry, 2021, 60, 2519-2523.	2.5	8
39	From molecular shuttles to directed procession of nanorings. Chemical Physics, 2008, 352, 235-240.	1.9	7
40	Multiscale Approach to the Determination of the Photoactive Yellow Protein Signaling State Ensemble. PLoS Computational Biology, 2014, 10, e1003797.	3.2	5
41	Diffusion of a disordered protein on its folded ligand. Biophysical Journal, 2022, 121, 200a.	0.5	2
42	Coarse-Grained Simulations of Intrinsically Disordered Proteins in the Context of Liquid-Liquid Phase Separation. Biophysical Journal, 2018, 114, 431a-432a.	0.5	1
43	A High-Throughput Approach to Phase Separation of Disordered Proteins. Biophysical Journal, 2019, 116, 350a.	0.5	1
44	Optimized Force Fields for Simulations of Intrinsically Disordered Proteins. Biophysical Journal, 2015, 108, 227a.	0.5	0
45	Single-molecule fluorescence studies of IDPs and IDRs. , 2019, , 93-136.		O
46	Multiscale characterization of macromolecular dynamics., 2013,,.		0
47	Impact of Hydrophobic Patterning on Conformational Ensemble of Disordered Proteins. Biophysical Journal, 2020, 118, 214a.	0.5	O