
Richard M Epand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Diacylglycerol Kinase ε N-Terminal Segment Regulates the Phosphatidylinositol Cycle, Controlling the Rate but Not the Acyl Chain Composition of Its Lipid Intermediates. ACS Chemical Biology, 2022, 17, 2495-2506.	1.6	7
2	α-Synuclein and neuronal membranes: Conformational flexibilities in health and disease. Chemistry and Physics of Lipids, 2021, 235, 105034.	1.5	8
3	Membrane morphology determines diacylglycerol kinase α substrate acyl chain specificity. FASEB Journal, 2021, 35, e21602.	0.2	7
4	Membrane shape as determinant of protein properties. Biophysical Chemistry, 2021, 273, 106587.	1.5	31
5	Plasmalogens and Chronic Inflammatory Diseases. Frontiers in Physiology, 2021, 12, 730829.	1.3	52
6	Interplay between cardiolipin and plasmalogens in Barth syndrome. Journal of Inherited Metabolic Disease, 2021, 45, 99.	1.7	6
7	Plasmalogen Replacement Therapy. Membranes, 2021, 11, 838.	1.4	18
8	Investigating the Effects of Charge Arrangement in Stimuli-Responsive Polyelectrolytes. Macromolecules, 2021, 54, 11427-11438.	2.2	4
9	Regulation of DGKε Activity and Substrate Acyl Chain Specificity by Negatively Charged Phospholipids. Biophysical Journal, 2020, 118, 957-966.	0.2	6
10	Discovery of an antivirulence compound that reverses β-lactam resistance in MRSA. Nature Chemical Biology, 2020, 16, 143-149.	3.9	57
11	Determinants of lipids acyl chain specificity: A tale of two enzymes. Biophysical Chemistry, 2020, 265, 106431.	1.5	15
12	Membrane Shape and the Regulation of Biological Processes. Journal of Molecular Biology, 2020, 432, 5124-5136.	2.0	23
13	Molecular Mechanism for the Suppression of Alpha Synuclein Membrane Toxicity by an Unconventional Extracellular Chaperone. Journal of the American Chemical Society, 2020, 142, 9686-9699.	6.6	15
14	CDP-diacylglycerol, a critical intermediate in lipid metabolism. Chemistry and Physics of Lipids, 2020, 230, 104914.	1.5	27
15	Membrane activity of two short Trp-rich amphipathic peptides. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183280.	1.4	8
16	Promotion of plasmalogen biosynthesis reverse lipid changes in a Barth Syndrome cell model. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158677.	1.2	9
17	Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183241.	1.4	5
18	Structural Basis of Alpha Synuclein Assembly Toxicity Inhibition by Human Serum Albumin. Biophysical Journal, 2020, 118, 61a-62a.	0.2	0

#	Article	IF	CITATIONS
19	Specificity of Acyl Chain Composition of Phosphatidylinositols. Proteomics, 2019, 19, e1900138.	1.3	20
20	Membrane Remodeling by the Lytic Fragment ofÂSticholysinII: Implications for the Toroidal PoreÂModel. Biophysical Journal, 2019, 117, 1563-1576.	0.2	12
21	Atomic resolution map of the soluble amyloid beta assembly toxic surfaces. Chemical Science, 2019, 10, 6072-6082.	3.7	48
22	Cholesterol-Recognition Motifs in Membrane Proteins. Advances in Experimental Medicine and Biology, 2019, 1135, 3-25.	0.8	67
23	Role of membrane shape in regulating the phosphatidylinositol cycle at contact sites. Chemistry and Physics of Lipids, 2019, 221, 24-29.	1.5	15
24	Anionic Lipid Clustering Model. Advances in Experimental Medicine and Biology, 2019, 1117, 65-71.	0.8	16
25	Plasmalogen loss caused by remodeling deficiency in mitochondria. Life Science Alliance, 2019, 2, e201900348.	1.3	29
26	Plasmalogen Precursors Reverse Lipid Changes in a Barth Syndrome Cell Model. FASEB Journal, 2019, 33, 660.4.	0.2	0
27	Membrane Physical Properties Regulate the Rate and Acyl Chain Specificity of One of the Steps of the Phosphatidylinositol Cycle. FASEB Journal, 2019, 33, 787.1.	0.2	0
28	Substantial Decrease in Plasmalogen in the Heart Associated with Tafazzin Deficiency. Biochemistry, 2018, 57, 2162-2175.	1.2	27
29	NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. Laboratory Investigation, 2018, 98, 228-232.	1.7	29
30	Membrane curvature allosterically regulates the phosphatidylinositol cycle, controlling its rate and acyl-chain composition of its lipid intermediates. Journal of Biological Chemistry, 2018, 293, 17780-17791.	1.6	47
31	Membrane Lipid Domains. , 2018, , 1-11.		1
32	Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction. Journal of Membrane Biology, 2017, 250, 353-366.	1.0	53
33	Expression, Purification, and Properties of a Human Arachidonoyl-Specific Isoform of Diacylglycerol Kinase. Biochemistry, 2017, 56, 1337-1347.	1.2	13
34	Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1350-1361.	1.4	27
35	Thermodynamics of Methyl-Î ² -cyclodextrin-Induced Lipid Vesicle Solubilization: Effect of Lipid Headgroup and Backbone. Langmuir, 2017, 33, 13882-13891.	1.6	13
36	Phylogenetic analysis of the diacylglycerol kinase family of proteins and identification of multiple highly-specific conserved inserts and deletions within the catalytic domain that are distinctive characteristics of different classes of DGK homologs. PLoS ONE, 2017, 12, e0182758.	1.1	7

#	Article	IF	CITATIONS
37	A tribute to Alexander Davidson Bain: An NMR pioneer and mentor at McMaster University. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, e21418.	0.2	0
38	Diacylglycerol Kinase-ε: Properties and Biological Roles. Frontiers in Cell and Developmental Biology, 2016, 4, 112.	1.8	36
39	Introduction to the Special Issue on "Properties and Functions of Cholesterol― Chemistry and Physics of Lipids, 2016, 199, 1-2.	1.5	3
40	In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chemistry and Physics of Lipids, 2016, 198, 13.	1.5	1
41	Host Defense Peptides and Their Potential as Therapeutic Agents. , 2016, , .		19
42	Diacylglycerol kinase epsilon suppresses expression of p53 and glycerol kinase in mouse embryo fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1993-1999.	1.2	6
43	In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chemistry and Physics of Lipids, 2016, 199, 3-10.	1.5	10
44	Loss of protein association causes cardiolipin degradation in Barth syndrome. Nature Chemical Biology, 2016, 12, 641-647.	3.9	99
45	Content of Plasmalogen Lipids Markedly Decreases in Barth Syndrome. Biophysical Journal, 2016, 110, 84a.	0.2	Ο
46	Roles of specific lipid species in the cell and their molecular mechanism. Progress in Lipid Research, 2016, 62, 75-92.	5.3	81
47	NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death and Differentiation, 2016, 23, 1140-1151.	5.0	147
48	Introduction to the special issue: Inhibitors of enzymes involved in lipid metabolism. Chemistry and Physics of Lipids, 2016, 197, 1-2.	1.5	0
49	Molecular mechanisms of membrane targeting antibiotics. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 980-987.	1.4	372
50	Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes. Membranes, 2015, 5, 532-552.	1.4	1
51	The Phosphatidylinositol Synthase-Catalyzed Formation of Phosphatidylinositol Does Not Exhibit Acyl Chain Specificity. Biochemistry, 2015, 54, 1151-1153.	1.2	19
52	Molecular properties of diacylglycerol kinase-epsilon in relation to function. Chemistry and Physics of Lipids, 2015, 192, 100-108.	1.5	9
53	Comment on "Cholesterol solubility limit in lipid membranes probed by small angle neutron scattering and MD simulations―by S. Garg et al., Soft Matter, 2014, 10, 9313. Soft Matter, 2015, 11, 5580-5581.	1.2	0
54	Response to "Reply to the â€~Comment on "Cholesterol Solubility Limit in Lipid Membranes probed by Small Angle Neutron Scattering and MD Simulations by Ursula Perez-Salas, Soft Matter, 2014, 10, 9313–9317â€â€™â€∎ Soft Matter, 2015, 11, 7457-7457.	1.2	0

#	Article	IF	CITATIONS
55	A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells. Cell Death and Disease, 2015, 6, e1944-e1944.	2.7	48
56	Membrane curvature modulation of protein activity determined by NMR. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 220-228.	1.4	50
57	Mitochondrial NM23-H4/NDPK-D: a bifunctional nanoswitch for bioenergetics and lipid signaling. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 271-278.	1.4	16
58	Introduction to Membrane Lipids. Methods in Molecular Biology, 2015, 1232, 1-6.	0.4	13
59	Mammalian Diacylglycerol Kinase Epsilon: Expression in Sf21 Cells, Purification, and Characterization. FASEB Journal, 2015, 29, 895.1.	0.2	0
60	Mitochondrial cardiolipin/phospholipid trafficking: The role of membrane contact site complexes and lipid transfer proteins. Chemistry and Physics of Lipids, 2014, 179, 32-41.	1.5	61
61	High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2160-2172.	1.4	142
62	Deciphering the mysteries of cardiolipins in mitochondria. Chemistry and Physics of Lipids, 2014, 179, 1-2.	1.5	3
63	Enrichment of phosphatidylinositols with specific acyl chains. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1501-1508.	1.4	71
64	Distinct Properties of the Two Isoforms of CDP-Diacylglycerol Synthase. Biochemistry, 2014, 53, 7358-7367.	1.2	47
65	Externalization of Cardiolipin as an "Eat-Me―Mitophageal Signal is Facilitated by NDPK-D. Biophysical Journal, 2014, 106, 184a.	0.2	3
66	Contrasting the incorporation of glycerol into lipids caused by the presence of two isoforms of diacylglycerol kinase (605.20). FASEB Journal, 2014, 28, 605.20.	0.2	0
67	Sensitization of gramâ€negative bacteria by targeting the membrane potential. FASEB Journal, 2013, 27, 3818-3826.	0.2	57
68	Mitochondrial Nm23-H4/NDPK-D is Multifunctional: Intermembrane Cardiolipin Transfer Linked to Apoptosis. Biophysical Journal, 2013, 104, 216a.	0.2	0
69	Diacylglycerol Kinase Delta Promotes Lipogenesis. Biochemistry, 2013, 52, 7766-7776.	1.2	18
70	The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2757-2762.	1.4	34
71	Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37. RSC Advances, 2013, 3, 19560.	1.7	52
72	Dual Function of Mitochondrial Nm23-H4 Protein in Phosphotransfer and Intermembrane Lipid Transfer. Journal of Biological Chemistry, 2013, 288, 111-121.	1.6	92

#	Article	IF	CITATIONS
73	5-(Perylen-3-yl)Ethynyl-arabino-Uridine (aUY11), an Arabino-Based Rigid Amphipathic Fusion Inhibitor, Targets Virion Envelope Lipids To Inhibit Fusion of Influenza Virus, Hepatitis C Virus, and Other Enveloped Viruses. Journal of Virology, 2013, 87, 3640-3654.	1.5	65
74	The basis of the substrate specificity of the epsilon isoform of human diacylglycerol kinase is not a consequence of competing hydrolysis of ATP. Chemistry and Physics of Lipids, 2013, 166, 26-30.	1.5	4
75	Aggregatibacter actinomycetemcomitans Leukotoxin Utilizes a Cholesterol Recognition/Amino Acid Consensus Site for Membrane Association. Journal of Biological Chemistry, 2013, 288, 23607-23621.	1.6	47
76	The Basis of the Substrate Specificity of the Epsilon Isoform of Human Diacylglycerol Kinase is not a Consequence of Competing Hydrolysis of ATP. FASEB Journal, 2013, 27, 1018.2.	0.2	0
77	Antibacterial Properties of an Oligo-Acyl-Lysyl Hexamer Targeting Gram-Negative Species. Antimicrobial Agents and Chemotherapy, 2012, 56, 4827-4832.	1.4	13
78	Phosphatidylinositol-4-phosphate 5-Kinase Isoforms Exhibit Acyl Chain Selectivity for Both Substrate and Lipid Activator. Journal of Biological Chemistry, 2012, 287, 35953-35963.	1.6	47
79	The physical state of lipid substrates provides transacylation specificity for tafazzin. Nature Chemical Biology, 2012, 8, 862-869.	3.9	101
80	Decoding the Functional Roles of Cationic Side Chains of the Major Antimicrobial Region of Human Cathelicidin LL-37. Antimicrobial Agents and Chemotherapy, 2012, 56, 845-856.	1.4	88
81	The Clustering of Anionic Lipids by Highly Cationic Cell Penetrating Peptides, as with Antimicrobial Peptides, can Contribute to their Antimicrobial Activity. Biophysical Journal, 2012, 102, 487a.	0.2	0
82	Mitochondrial Nm23-H4 can switch between phosphotransfer and lipid transfer activities. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S87-S88.	0.5	0
83	Intermembrane Lipid Transfer is Facilitated by Mitochondrial Nucleoside Diphosphate Kinase D. Biophysical Journal, 2012, 102, 494a-495a.	0.2	0
84	Reconstitution of Acyl Specific Phospholipid Remodeling by Purified Tafazzin In Vitro. Biophysical Journal, 2012, 102, 289a.	0.2	0
85	Catalytic Activity and Acyl-Chain Selectivity of Diacylglycerol Kinase É› Are Modulated by Residues in and near the Lipoxygenase-Like Motif. Journal of Molecular Biology, 2012, 416, 619-628.	2.0	9
86	Further Insights into the Properties of the HIV gp41 Fusion Domain: Commentary on the Article by A. L. Lai et al Journal of Molecular Biology, 2012, 418, 1-2.	2.0	3
87	Recognition of polyunsaturated acyl chains by enzymes acting on membrane lipids. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 957-962.	1.4	14
88	Caveolin-1 hydrophobic segment peptides insertion into membrane mimetic systems: Role of Proline residue. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 12-18.	1.4	16
89	Membrane-Active Peptides and the Clustering of Anionic Lipids. Biophysical Journal, 2012, 103, 265-274.	0.2	115
90	Aggregatibacter actinomycetemcomitans leukotoxin cytotoxicity occurs through bilayer destabilization. Cellular Microbiology, 2012, 14, 869-881.	1.1	29

#	Article	IF	CITATIONS
91	Phosphocreatine Interacts with Phospholipids, Affects Membrane Properties and Exerts Membrane-Protective Effects. PLoS ONE, 2012, 7, e43178.	1.1	61
92	Physical Properties Affecting Cochleate Formation and Morphology Using Antimicrobial Oligo-acyl-lysyl Peptide Mimetics and Mixtures Mimicking the Composition of Bacterial Membranes in the Absence of Divalent Cations. Journal of Physical Chemistry B, 2011, 115, 2287-2293.	1.2	19
93	Regulation and Functions of Diacylglycerol Kinases. Chemical Reviews, 2011, 111, 6186-6208.	23.0	176
94	Acyl Chain Specificity of the Inhibition of Actin Polymerization by the InteractionÂof Lysophosphatidic Acid and Villin. Biophysical Journal, 2011, 100, 301a.	0.2	0
95	Endocannabinoids and diacylglycerol kinase activity. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1050-1053.	1.4	7
96	Study of Arachidonoyl Specificity in Two Enzymes of the PI Cycle. Journal of Molecular Biology, 2011, 409, 101-112.	2.0	41
97	The oxysterol 3β-hydroxy-5-oxo-5,6-secocholestan-6-al changes the phase behavior and structure of phosphatidylethanolamine–phosphatidylcholine mixtures. Chemistry and Physics of Lipids, 2011, 164, 672-679.	1.5	6
98	Electrodeposition of chitosan–hemoglobin films. Materials Letters, 2011, 65, 1463-1465.	1.3	34
99	Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion. Retrovirology, 2011, 8, 99.	0.9	89
100	Substrate specificity of diacylglycerol kinase-epsilon and the phosphatidylinositol cycle. FEBS Letters, 2011, 585, 4025-4028.	1.3	23
101	Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cellular and Molecular Life Sciences, 2011, 68, 2177-2188.	2.4	29
102	Bacterial membrane lipids in the action of antimicrobial agents. Journal of Peptide Science, 2011, 17, 298-305.	0.8	254
103	Functional studies of cochleate assemblies of an oligoâ€acylâ€lysyl with lipid mixtures for combating bacterial multidrug resistance. FASEB Journal, 2011, 25, 3336-3343.	0.2	22
104	Soluble Respiratory Syncytial Virus Fusion Protein in the Fully Cleaved, Pretriggered State Is Triggered by Exposure to Low-Molarity Buffer. Journal of Virology, 2011, 85, 3968-3977.	1.5	56
105	The Final Conformation of the Complete Ectodomain of the HA2 Subunit of Influenza Hemagglutinin Can by Itself Drive Low pH-dependent Fusion. Journal of Biological Chemistry, 2011, 286, 13226-13234.	1.6	40
106	Phosphatidylethanolamines Modified by γ-Ketoaldehyde (γKA) Induce Endoplasmic Reticulum Stress and Endothelial Activation. Journal of Biological Chemistry, 2011, 286, 18170-18180.	1.6	46
107	Flanking Residues Help Determine Whether a Hydrophobic Segment Adopts a Monotopic or Bitopic Topology in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2011, 286, 25284-25290.	1.6	17
108	Functional Consequencesof the Lateral Organizationof Biological Membranes. , 2011, , 133-152.		1

7

#	Article	IF	CITATIONS
109	Identification of a common motif for the recognition of moieties containing polyunsaturated fatty acids. FASEB Journal, 2011, 25, 939.7.	0.2	0
110	Electrodeposition of hyaluronic acid and hyaluronic acid–bovine serum albumin films from aqueous solutions. Colloids and Surfaces B: Biointerfaces, 2010, 77, 279-285.	2.5	33
111	Oral administration of L-mR18L, a single domain cationic amphipathic helical peptide, inhibits lesion formation in ApoE null mice. Journal of Lipid Research, 2010, 51, 3491-3499.	2.0	24
112	Depolarization, Bacterial Membrane Composition, and the Antimicrobial Action of Ceragenins. Antimicrobial Agents and Chemotherapy, 2010, 54, 3708-3713.	1.4	178
113	Cholesterol Interaction with Proteins That Partition into Membrane Domains: An Overview. Sub-Cellular Biochemistry, 2010, 51, 253-278.	1.0	58
114	The Role of Proline in the Membrane Re-entrant Helix of Caveolin-1. Journal of Biological Chemistry, 2010, 285, 33371-33380.	1.6	34
115	Comparison of the Effects of Cholesterol or 3β-Hydroxy-5-Oxo-5,6-Secocholestan-6-Al on the Thermotropic and Structural Properties of Mixtures of Phosphatidylethanolamine and Phosphatidylcholine. Biophysical Journal, 2010, 98, 489a.	0.2	0
116	Phosphatidic Acid Association with the Bovine Mitochondrial ADP/ATP Carrier. Biophysical Journal, 2010, 98, 506a.	0.2	0
117	OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. FASEB Journal, 2010, 24, 5092-5101.	0.2	27
118	Peptide-Induced Domain Formation in Supported Lipid Bilayers: Direct Evidence by Combined Atomic Force and Polarized Total Internal Reflection Fluorescence Microscopy. Biophysical Journal, 2010, 98, 815-823.	0.2	62
119	Peptide-Induced Domain Formation in Supported Lipid Bilayers: Direct Evidence By Combined Atomic Force and Polarized Total Internal Reflection Fluorescence Microscopy. Biophysical Journal, 2010, 98, 86a.	0.2	0
120	Amphipathic Helical Cationic Antimicrobial Peptides Promote Rapid Formation of Crystalline States in the Presence of Phosphatidylglycerol: Lipid Clustering in Anionic Membranes. Biophysical Journal, 2010, 98, 2564-2573.	0.2	56
121	Molecular Species of Phosphatidylinositol-Cycle Intermediates in the Endoplasmic Reticulum and Plasma Membrane. Biochemistry, 2010, 49, 312-317.	1.2	24
122	Comparative Analysis of Membrane-Associated Fusion Peptide Secondary Structure and Lipid Mixing Function of HIV gp41 Constructs that Model the Early Pre-Hairpin Intermediate and Final Hairpin Conformations. Journal of Molecular Biology, 2010, 397, 301-315.	2.0	38
123	Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1272-1280.	1.4	62
124	Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17339-17344.	3.3	139
125	Probing the "Charge Cluster Mechanism―in Amphipathic Helical Cationic Antimicrobial Peptides. Biochemistry, 2010, 49, 4076-4084.	1.2	141
126	Freeze-Fracture TEM on Domains in Lipid Mono- and Bilayer and Promoted by Antimicrobial Peptides as a New Generation of Antibiotics. Biophysical Journal, 2010, 98, 746a.	0.2	0

#	Article	IF	CITATIONS
127	Lipid Clustering by Three Homologous Arginine-Rich Antimicrobial Peptides is Insensitive to Amino Acid Arrangement. Biophysical Journal, 2010, 98, 218a.	0.2	Ο
128	Diacylglycerol Kinase ϵ Is Selective for Both Acyl Chains of Phosphatidic Acid or Diacylglycerol. Journal of Biological Chemistry, 2009, 284, 31062-31073.	1.6	60
129	Lipid Segregation Explains Selective Toxicity of a Series of Fragments Derived from the Human Cathelicidin LL-37. Antimicrobial Agents and Chemotherapy, 2009, 53, 3705-3714.	1.4	81
130	Comparison of the interaction of methionine and norleucine-containing peptides with phospholipid bilayers. International Journal of Peptide and Protein Research, 2009, 30, 515-521.	0.1	7
131	The oxidized form of cholesterol 3β-hydroxy-5-oxo-5,6-secocholestan-6-al induces structural and thermotropic changes in phospholipid membranes. Chemistry and Physics of Lipids, 2009, 161, 95-102.	1.5	11
132	Design and Characterization of a Broad -Spectrum Bactericidal Acyl-lysyl Oligomer. Chemistry and Biology, 2009, 16, 1250-1258.	6.2	26
133	Association of Phosphatidic Acid with the Bovine Mitochondrial ADP/ATP Carrier. Biochemistry, 2009, 48, 12358-12364.	1.2	8
134	Conformational Stability and Membrane Interaction of the Full-Length Ectodomain of HIV-1 gp41: Implication for Mode of Action. Biochemistry, 2009, 48, 3166-3175.	1.2	37
135	Interaction of NDPK-D with cardiolipin-containing membranes: Structural basis and implications for mitochondrial physiology. Biochimie, 2009, 91, 779-783.	1.3	38
136	Mammalian diacylglycerol kinases: Molecular interactions and biological functions of selected isoforms. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 416-424.	1.1	146
137	Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 289-294.	1.4	478
138	Mitochondrial kinases and their molecular interaction with cardiolipin. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2032-2047.	1.4	82
139	Anti-inflammatory peptides grab on to the whiskers of atherogenic oxidized lipids. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1967-1975.	1.4	27
140	Cell-Wall Interactions and the Selective Bacteriostatic Activity of a Miniature Oligo-Acyl-Lysyl. Biophysical Journal, 2009, 97, 2250-2257.	0.2	44
141	Domains in bacterial membranes and the action of antimicrobial agents. Molecular BioSystems, 2009, 5, 580.	2.9	151
142	Investigating the anionic phospholipid regulation of diacylglycerol kinase epsilon. FASEB Journal, 2009, 23, 520.9.	0.2	0
143	Ligand-modulation of the stability of the glucose transporter GLUT 1. Protein Science, 2008, 10, 1363-1369.	3.1	8
144	Membrane activity of an amphiphilic α-Helical membrane-proximal cytoplasmic domain of the MoMuLV envelope glycoprotein. Experimental and Molecular Pathology, 2008, 84, 9-17.	0.9	7

#	Article	IF	CITATIONS
145	Tocopherols and tocotrienols in membranes: A critical review. Free Radical Biology and Medicine, 2008, 44, 739-764.	1.3	248
146	Bacterial Membranes as Predictors of Antimicrobial Potency. Journal of the American Chemical Society, 2008, 130, 14346-14352.	6.6	157
147	Role of Phospholipid Scramblase 3 in the Regulation of Tumor Necrosis Factor-α-Induced Apoptosis. Biochemistry, 2008, 47, 4518-4529.	1.2	49
148	Interaction of 7-Ketocholesterol with Two Major Components of the Inner Leaflet of the Plasma Membrane: Phosphatidylethanolamine and Phosphatidylserine. Biochemistry, 2008, 47, 3004-3012.	1.2	14
149	Cationic peptide-induced remodelling of model membranes: Direct visualization by in situ atomic force microscopy. Journal of Structural Biology, 2008, 162, 121-138.	1.3	76
150	Dual Mechanism of Bacterial Lethality for a Cationic Sequence-Random Copolymer that Mimics Host-Defense Antimicrobial Peptides. Journal of Molecular Biology, 2008, 379, 38-50.	2.0	158
151	Determination of the Topology of the Hydrophobic Segment of Mammalian Diacylglycerol Kinase Epsilon in a Cell Membrane and Its Relationship to Predictions from Modeling. Journal of Molecular Biology, 2008, 383, 797-809.	2.0	33
152	Cationic amphiphiles and the solubilization of cholesterol crystallites in membrane bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 844-853.	1.4	13
153	CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1120-1130.	1.4	48
154	Proteins and cholesterol-rich domains. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1576-1582.	1.4	148
155	Dramatic Differences in the Roles in Lipid Metabolism of Two Isoforms of Diacylglycerol Kinase. Biochemistry, 2008, 47, 9372-9379.	1.2	55
156	Hydrophobic Substitutions in the First Residue of the CRAC Segment of the gp41 Protein of HIV. Biochemistry, 2008, 47, 124-130.	1.2	44
157	Ceragenins: Cholic Acid-Based Mimics of Antimicrobial Peptides. Accounts of Chemical Research, 2008, 41, 1233-1240.	7.6	182
158	Large Changes in the CRAC Segment of gp41 of HIV Do Not Destroy Fusion Activity if the Segment Interacts with Cholesterol. Biochemistry, 2008, 47, 11869-11876.	1.2	27
159	Lipopolysaccharide, a Key Molecule Involved in the Synergism between Temporins in Inhibiting Bacterial Growth and in Endotoxin Neutralization. Journal of Biological Chemistry, 2008, 283, 22907-22917.	1.6	91
160	Ceramide Is Responsible for the Failure of Compensatory Nerve Sprouting in Apolipoprotein E Knock-Out Mice. Journal of Neuroscience, 2008, 28, 7891-7899.	1.7	15
161	Ceragenins (Cationic Steroid Compounds), a Novel Class of Antimicrobial Agents. Drug News and Perspectives, 2008, 21, 307.	1.9	51
162	ApoA-I Mimetic Peptides with Differing Ability to Inhibit Atherosclerosis Also Exhibit Differences in Their Interactions with Membrane Bilayers. Journal of Biological Chemistry, 2007, 282, 1980-1988.	1.6	35

#	Article	IF	CITATIONS
163	Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Human Molecular Genetics, 2007, 16, 2600-2615.	1.4	322
164	Cholesterol Binding Does Not Predict Activity of the Steroidogenic Acute Regulatory Protein, StAR. Journal of Biological Chemistry, 2007, 282, 10223-10232.	1.6	82
165	Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2500-2509.	1.4	343
166	Membrane interactions of the hydrophobic segment of diacylglycerol kinase epsilon. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2549-2558.	1.4	14
167	Cardiolipin Clusters and Membrane Domain Formation Induced by Mitochondrial Proteins. Journal of Molecular Biology, 2007, 365, 968-980.	2.0	98
168	Mimicry of Antimicrobial Host-Defense Peptides by Random Copolymers. Journal of the American Chemical Society, 2007, 129, 15474-15476.	6.6	403
169	Membrane Lipid Polymorphism. Methods in Molecular Biology, 2007, 400, 15-26.	0.4	30
170	Role of the Hydrophobic Segment of Diacylglycerol Kinase ε. Biochemistry, 2007, 46, 6109-6117.	1.2	25
171	High Cationic Charge and Bilayer Interface-Binding Helices in a Regulatory Lipid Glycosyltransferase,. Biochemistry, 2007, 46, 5664-5677.	1.2	40
172	Substrate Chirality and Specificity of Diacylglycerol Kinases and the Multisubstrate Lipid Kinase. Biochemistry, 2007, 46, 14225-14231.	1.2	20
173	Novel Lipid Transfer Property of Two Mitochondrial Proteins that Bridge the Inner and Outer Membranes. Biophysical Journal, 2007, 92, 126-137.	0.2	71
174	Measurement of Mammalian Diacylglycerol Kinase Activity In Vitro and in Cells. Methods in Enzymology, 2007, 434, 293-304.	0.4	12
175	Phosphorylation of mitochondrial phospholipid scramblase 3 by protein kinase C-δ induces its activation and facilitates mitochondrial targeting of tBid. Journal of Cellular Biochemistry, 2007, 101, 1210-1221.	1.2	52
176	Detecting the presence of membrane domains using DSC. Biophysical Chemistry, 2007, 126, 197-200.	1.5	31
177	Low cholesterol solubility in DODAB liposomes. Chemistry and Physics of Lipids, 2007, 145, 27-36.	1.5	18
178	Roles of Salt and Conformation in the Biological and Physicochemical Behavior of Protegrin-1 and Designed Analogues: Correlation of Antimicrobial, Hemolytic, and Lipid Bilayer-Perturbing Activitiesâ€. Biochemistry, 2006, 45, 15718-15730.	1.2	27
179	Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization. Biophysical Journal, 2006, 90, 2170-2178.	0.2	186
180	Juxtamembrane Protein Segments that Contribute to Recruitment of Cholesterol into Domainsâ€. Biochemistry, 2006, 45, 6105-6114.	1.2	104

#	Article	IF	CITATIONS
181	Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1343-1350.	1.4	143
182	Tracking peptide–membrane interactions: Insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly. Journal of Structural Biology, 2006, 155, 458-469.	1.3	27
183	A Product of Ozonolysis of Cholesterol Alters the Biophysical Properties of Phosphatidylethanolamine Membranes. Biochemistry, 2006, 45, 1345-1351.	1.2	27
184	Cholesterol and the interaction of proteins with membrane domains. Progress in Lipid Research, 2006, 45, 279-294.	5.3	270
185	Changes in molecular order across the lamellar-to-inverted hexagonal phase transition depend on the position of the double-bond in mono-unsaturated phospholipid dispersions. Chemistry and Physics of Lipids, 2006, 140, 98-108.	1.5	5
186	DSC studies on interactions between low molecular mass peptide dendrimers and model lipid membranes. International Journal of Pharmaceutics, 2006, 327, 145-152.	2.6	49
187	Interaction of Influenza Virus Fusion Peptide with Lipid Membranes: Effect of Lysolipid. Journal of Membrane Biology, 2006, 211, 191-200.	1.0	8
188	Membrane Lipid Composition and the Interaction of Pardaxin: The Role of Cholesterol. Protein and Peptide Letters, 2006, 13, 1-5.	0.4	42
189	The Role of Proteins in the Formation of Domains in Membranes. , 2006, , 111-126.		2
190	Sorting lipids and proteins into domains. FASEB Journal, 2006, 20, A424.	0.2	0
191	Substrate specificity and the role of a putative transmembrane segment of diacylglycerol kinase epsilon. FASEB Journal, 2006, 20, A482.	0.2	0
192	Role of chirality in peptide-induced formation of cholesterol-rich domains. Biochemical Journal, 2005, 390, 541-548.	1.7	23
193	PAMAM dendrimers and model membranes: Differential scanning calorimetry studies. International Journal of Pharmaceutics, 2005, 305, 154-166.	2.6	57
194	Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique. Chemistry and Physics of Lipids, 2005, 135, 213-221.	1.5	58
195	Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering. European Physical Journal E, 2005, 18, 447-458.	0.7	91
196	Induction of raft-like domains by a myristoylated NAP-22 peptide and its Tyr mutant. FEBS Journal, 2005, 272, 1792-1803.	2.2	23
197	Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism. Chemistry and Physics of Lipids, 2005, 135, 39-53.	1.5	21
198	Bacterial species selective toxicity of two isomeric α/β-peptides: Role of membrane lipids. Molecular Membrane Biology, 2005, 22, 457-469.	2.0	31

#	Article	IF	CITATIONS
199	The Tryptophan-Rich Region of HIV gp41 and the Promotion of Cholesterol-Rich Domains. Biochemistry, 2005, 44, 5525-5531.	1.2	45
200	Caveolin Scaffolding Region and Cholesterol-rich Domains in Membranes. Journal of Molecular Biology, 2005, 345, 339-350.	2.0	140
201	Structural and Functional Properties of an Unusual Internal Fusion Peptide in a Nonenveloped Virus Membrane Fusion Protein. Journal of Virology, 2004, 78, 2808-2818.	1.5	46
202	Myristoylation, a Protruding Loop, and Structural Plasticity Are Essential Features of a Nonenveloped Virus Fusion Peptide Motif. Journal of Biological Chemistry, 2004, 279, 51386-51394.	1.6	50
203	Aromatic Residue Position on the Nonpolar Face of Class A Amphipathic Helical Peptides Determines Biological Activity. Journal of Biological Chemistry, 2004, 279, 26509-26517.	1.6	72
204	Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes. Biochemical Journal, 2004, 381, 941-949.	1.7	85
205	Two Homologous Apolipoprotein Al Mimetic Peptides. Journal of Biological Chemistry, 2004, 279, 51404-51414.	1.6	21
206	The biological potency of a series of analogues of human calcitonin correlates with their interactions with phospholipids. Biopolymers, 2004, 76, 258-265.	1.2	7
207	Properties of polyunsaturated phosphatidylcholine membranes in the presence and absence of cholesterol. Magnetic Resonance in Chemistry, 2004, 42, 139-147.	1.1	11
208	Factors determining pressure perturbation calorimetry measurements: evidence for the formation of metastable states at lipid phase transitions. Chemistry and Physics of Lipids, 2004, 129, 21-30.	1.5	18
209	Non-raft forming sphingomyelin–cholesterol mixtures. Chemistry and Physics of Lipids, 2004, 132, 37-46.	1.5	46
210	Lipid Modulation of the Activity of Diacylglycerol Kinase α- and ζ-Isoforms:  Activation by Phosphatidylethanolamine and Cholesterol. Biochemistry, 2004, 43, 14767-14777.	1.2	26
211	The α Isoform of Diacylglycerol Kinase Exhibits Arachidonoyl Specificity with Alkylacylglycerol. Biochemistry, 2004, 43, 14778-14783.	1.2	13
212	An Apolipoprotein Al Mimetic Peptide:  Membrane Interactions and the Role of Cholesterol,. Biochemistry, 2004, 43, 5073-5083.	1.2	48
213	Antimicrobial 14-Helical β-Peptides:  Potent Bilayer Disrupting Agents. Biochemistry, 2004, 43, 9527-9535.	1.2	98
214	Structural Changes and Aggregation of Human Influenza Virus. Biomacromolecules, 2004, 5, 1728-1735.	2.6	17
215	Do proteins facilitate the formation of cholesterol-rich domains?. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 227-238.	1.4	44
216	Fatty acids enhance membrane permeabilization by pro-apoptotic Bax. Biochemical Journal, 2004, 377, 509-516.	1.7	21

#	Article	IF	CITATIONS
217	Cholesterol-dependent partitioning of PtdIns(4,5)P2 into membrane domains by the N-terminal fragment of NAP-22 (neuronal axonal myristoylated membrane protein of 22 kDa). Biochemical Journal, 2004, 379, 527-532.	1.7	44
218	Specificity of Membrane Binding of the Neuronal Protein NAP-22. Journal of Membrane Biology, 2003, 193, 171-176.	1.0	10
219	Membrane fusion activity of vesicular stomatitis virus glycoprotein G is induced by low pH but not by heat or denaturant. Virology, 2003, 310, 319-332.	1.1	41
220	Membrane Fusion. ChemInform, 2003, 34, no.	0.1	0
221	Direct comparison of membrane interactions of model peptides composed of only Leu and Lys residues. Biopolymers, 2003, 71, 2-16.	1.2	51
222	Design and function of a conformationally restricted analog of the influenza virus fusion peptide. Chemical Biology and Drug Design, 2003, 62, 19-26.	1.2	4
223	Quaternary structure of the neuronal protein NAP-22 in aqueous solution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1650, 50-58.	1.1	10
224	Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins. FEBS Journal, 2003, 270, 1240-1248.	0.2	62
225	Trichogin: a paradigm for lipopeptaibols. Journal of Peptide Science, 2003, 9, 679-689.	0.8	83
226	The arrangement of cholesterol in membranes and binding of NAP-22. Chemistry and Physics of Lipids, 2003, 122, 33-39.	1.5	25
227	Irreversible Unfolding of the Neutral pH Form of Influenza Hemagglutinin Demonstrates That It Is Not in a Metastable Stateâ€. Biochemistry, 2003, 42, 5052-5057.	1.2	13
228	Binding of NAP-22, a Calmodulin-Binding Neuronal Protein, to Raft-like Domains in Model Membranesâ€. Biochemistry, 2003, 42, 4780-4786.	1.2	44
229	Peptide-Induced Formation of Cholesterol-Rich Domainsâ€. Biochemistry, 2003, 42, 14677-14689.	1.2	81
230	Transbilayer Lipid Diffusion Promoted by Bax: Implications for Apoptosisâ€. Biochemistry, 2003, 42, 14576-14582.	1.2	56
231	Novel properties of cholesterol–dioleoylphosphatidylcholine mixtures. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1616, 196-208.	1.4	52
232	On the Interaction Between gp41 and Membranes: The Immunodominant Loop Stabilizes gp41 Helical Hairpin Conformation. Journal of Molecular Biology, 2003, 326, 1489-1501.	2.0	30
233	Fusion peptides and the mechanism of viral fusion. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1614, 116-121.	1.4	237
234	Cholesterol in Bilayers of Sphingomyelin or Dihydrosphingomyelin at Concentrations Found in Ocular Lens Membranes. Biophysical Journal, 2003, 84, 3102-3110.	0.2	70

#	Article	IF	CITATIONS
235	Membrane Fusion. Chemical Reviews, 2003, 103, 53-70.	23.0	254
236	Interaction with a Membrane Surface Triggers a Reversible Conformational Change in Bax Normally Associated with Induction of Apoptosis. Journal of Biological Chemistry, 2003, 278, 48935-48941.	1.6	177
237	Liposomes as Models for Antimicrobial Peptides. Methods in Enzymology, 2003, 372, 124-133.	0.4	19
238	The Apoptotic Protein tBid Promotes Leakage by Altering Membrane Curvature. Journal of Biological Chemistry, 2002, 277, 32632-32639.	1.6	155
239	Membrane perturbations induced by the apoptotic Bax protein. Biochemical Journal, 2002, 367, 849-855.	1.7	42
240	Thermal denaturation of influenza virus and its relationship to membrane fusion. Biochemical Journal, 2002, 365, 841-848.	1.7	41
241	Position-Dependent Hydrophobicity of the Antimicrobial Magainin Peptide Affects the Mode of Peptideâ^'Lipid Interactions and Selective Toxicity. Biochemistry, 2002, 41, 10723-10731.	1.2	145
242	Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochemistry and Cell Biology, 2002, 80, 49-63.	0.9	310
243	CTP:phosphocholine cytidylyltransferase and protein kinase C recognize different physical features of membranes: differential responses to an oxidized phosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 82-90.	1.4	28
244	Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochemical and Biophysical Research Communications, 2002, 298, 744-749.	1.0	100
245	Properties of Mixtures of Cholesterol with Phosphatidylcholine or with Phosphatidylserine Studied by 13C Magic Angle Spinning Nuclear Magnetic Resonance. Biophysical Journal, 2002, 83, 2053-2063.	0.2	41
246	High Temperature Stabilization of DNA in Complexes with Cationic Lipids. Biophysical Journal, 2002, 82, 264-273.	0.2	52
247	Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochemistry and Cell Biology, 2002, 80, 667-677.	0.9	180
248	Lipid binding activity of a neuron-specific protein NAP-22 studied in vivo and in vitro. Journal of Neuroscience Research, 2002, 70, 172-179.	1.3	35
249	Sendai virus N-terminal fusion peptide consists of two similar repeats, both of which contribute to membrane fusion. FEBS Journal, 2002, 269, 4342-4350.	0.2	15
250	Factors Contributing to the Fusogenic Potency of Foamy Virus. Biochemical and Biophysical Research Communications, 2001, 284, 870-874.	1.0	7
251	Osmotically Induced Membrane Tension Modulates Membrane Permeabilization by Class L Amphipathic Helical Peptides: Nucleation Model of Defect Formation. Biophysical Journal, 2001, 81, 949-959.	0.2	44
252	A New High-Temperature Transition of Crystalline Cholesterol in Mixtures with Phosphatidylserine. Biophysical Journal, 2001, 81, 1511-1520.	0.2	31

#	Article	IF	CITATIONS
253	The Enthalpy of Acyl Chain Packing and the Apparent Water-Accessible Apolar Surface Area of Phospholipids. Biophysical Journal, 2001, 80, 271-279.	0.2	90
254	Effect of magainin, class L, and class A amphipathic peptides on fatty acid spin labels in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1511, 28-41.	1.4	16
255	Self-assembly of influenza hemagglutinin: studies of ectodomain aggregation by in situ atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1513, 167-175.	1.4	27
256	Protein-Induced Formation of Cholesterol-Rich Domainsâ€. Biochemistry, 2001, 40, 10514-10521.	1.2	64
257	Physiological Implications of the Contrasting Modulation of the Activities of the ε- and ζ-Isoforms of Diacylglycerol Kinaseâ€. Biochemistry, 2001, 40, 10607-10613.	1.2	40
258	Membrane Interactions of Mutated Forms of the Influenza Fusion Peptide. Biochemistry, 2001, 40, 8800-8807.	1.2	50
259	The 1â^'127 HA2 Construct of Influenza Virus Hemagglutinin Induces Cellâ^'Cell Hemifusion. Biochemistry, 2001, 40, 8378-8386.	1.2	49
260	Regulation of CTP:Â Phosphocholine Cytidylyltransferase Activity by the Physical Properties of Lipid Membranes: An Important Role for Stored Curvature Strain Energyâ€. Biochemistry, 2001, 40, 10522-10531.	1.2	124
261	Analogs of the antimicrobial peptide trichogin having opposite membrane properties. FEBS Journal, 2001, 268, 703-712.	0.2	27
262	Role of the Glu Residues of the Influenza Hemagglutinin Fusion Peptide in the pH Dependence of Fusion Activity. Virology, 2001, 289, 353-361.	1.1	28
263	Membrane perturbing properties of sucrose polyesters. Chemistry and Physics of Lipids, 2001, 109, 185-202.	1.5	3
264	A Novel Linear Amphipathic β-Sheet Cationic Antimicrobial Peptide with Enhanced Selectivity for Bacterial Lipids. Journal of Biological Chemistry, 2001, 276, 27899-27906.	1.6	131
265	Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. Journal of Lipid Research, 2001, 42, 1096-1104.	2.0	203
266	Modulation of membrane curvature by peptides. Biopolymers, 2000, 55, 358-363.	1.2	58
267	Curvature properties of novel forms of phosphatidylcholine with branched acyl chains. FEBS Journal, 2000, 267, 2909-2915.	0.2	14
268	Neutron diffraction studies of viral fusion peptides. Physica B: Condensed Matter, 2000, 276-278, 495-498.	1.3	11
269	Membrane Fusion. Bioscience Reports, 2000, 20, 435-441.	1.1	27
270	Critical swelling in single phospholipid bilayers. Physical Review E, 2000, 61, 5634-5639.	0.8	19

#	Article	IF	CITATIONS
271	Electrostatic Control of Phospholipid Polymorphism. Biophysical Journal, 2000, 79, 3193-3200.	0.2	56
272	Cholesterol Crystalline Polymorphism and the Solubility of Cholesterol in Phosphatidylserine. Biophysical Journal, 2000, 78, 866-873.	0.2	64
273	15N NMR Study of the Ionization Properties of the Influenza Virus Fusion Peptide in Zwitterionic Phospholipid Dispersions. Biophysical Journal, 2000, 78, 2418-2425.	0.2	41
274	Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1468, 87-98.	1.4	60
275	Oblique Membrane Insertion of Viral Fusion Peptide Probed by Neutron Diffractionâ€. Biochemistry, 2000, 39, 6581-6585.	1.2	98
276	Factors Determining Vesicular Lipid Mixing Induced by Shortened Constructs of Influenza Hemagglutinin. Biochemistry, 2000, 39, 2733-2739.	1.2	20
277	The Polar Region Consecutive to the HIV Fusion Peptide Participates in Membrane Fusionâ€. Biochemistry, 2000, 39, 1826-1833.	1.2	107
278	Small-angle scattering studies of the fully hydrated phospholipid DPPC. Physical Review E, 1999, 59, 921-928.	0.8	14
279	Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine. Physical Review E, 1999, 59, 3361-3367.	0.8	42
280	The antimicrobial peptide trichogin and its interaction with phospholipid membranes. FEBS Journal, 1999, 266, 1021-1028.	0.2	51
281	Fluorescent probes used to monitor membrane interfacial polarity. Chemistry and Physics of Lipids, 1999, 101, 57-64.	1.5	43
282	Role of the N-terminal peptides of viral envelope proteins in membrane fusion. Advanced Drug Delivery Reviews, 1999, 38, 233-255.	6.6	39
283	Relationship of membrane sidedness to the effects of the lipophosphoglycan of Leishmania donovani on the fusion of influenza virus. FEBS Journal, 1999, 262, 890-899.	0.2	6
284	Diversity of antimicrobial peptides and their mechanisms of action. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1462, 11-28.	1.4	1,143
285	Re-analysis of Magic Angle Spinning Nuclear Magnetic Resonance Determination of Interlamellar Waters in Lipid Bilayer Dispersions. Biophysical Journal, 1999, 77, 2062-2065.	0.2	27
286	Studies of Phospholipid Hydration by High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance. Biophysical Journal, 1999, 76, 387-399.	0.2	84
287	A "Release―Protocol for Isothermal Titration Calorimetry. Biophysical Journal, 1999, 76, 2606-2613.	0.2	73
288	Glucose-Induced Thermal Stabilization of the Native Conformation of GLUT 1. Biochemistry, 1999, 38, 454-458.	1.2	25

#	Article	IF	CITATIONS
289	The ectodomain of HA2 of influenza virus promotes rapid ph dependent membrane fusion 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 286, 489-503.	2.0	84
290	Role of the Membrane in the Modulation of the Activity of Protein Kinase C. Journal of Liposome Research, 1999, 9, 21-41.	1.5	7
291	Structural Study of the Interaction Between the Mitochondrial Presequence of Cytochrome c Oxidase Subunit IV and Model Membranes. Bioscience Reports, 1998, 18, 251-263.	1.1	4
292	Lipid polymorphism and protein–lipid interactions. BBA - Biomembranes, 1998, 1376, 353-368.	7.9	313
293	Lipophosphoglycan of Leishmania donovani inhibits lipid vesicle fusion induced by the N-terminal extremity of viral fusogenic Simian immunodeficiency virus protein. FEBS Journal, 1998, 258, 150-156.	0.2	15
294	Fusion of Sendai virus and individual host cells and inhibition of fusion by lipophosphoglycan measured with image correlation spectroscopy. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 338-352.	1.9	22
295	Studies of kinetics and equilibrium membrane binding of class A and class L model amphipathic peptides1This work was supported by the Medical Research Council of Canada, grant MT-7654 and in part by NIH 90734343.1. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1368, 343-354.	1.4	24
296	Properties of lipoamino acids incorporated into membrane bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 67-75.	1.4	27
297	Increased Activation of Protein Kinase C with Cubic Phase Lipid Compared with Liposomesâ€. Biochemistry, 1998, 37, 2384-2392.	1.2	42
298	Modulation of Lipid Polymorphism by the Feline Leukemia Virus Fusion Peptide:  Implications for the Fusion Mechanism. Biochemistry, 1998, 37, 5720-5729.	1.2	40
299	The Chirality of Phosphatidylserine and the Activation of Protein Kinase Câ€. Biochemistry, 1998, 37, 12068-12073.	1.2	26
300	Structural Properties of the Putative Fusion Peptide of Fertilin, a Protein Active in Spermâ^'Egg Fusion, upon Interaction with the Lipid Bilayer. Biochemistry, 1998, 37, 17030-17039.	1.2	33
301	Interfacial Membrane Properties Modulate Protein Kinase C Activation:Â Role of the Position of Acyl Chain Unsaturationâ€. Biochemistry, 1998, 37, 10956-10960.	1.2	32
302	Evidence for a Regulatory Binding Site for Arginine-Rich Peptides on Protein Kinase C. Archives of Biochemistry and Biophysics, 1998, 356, 258-264.	1.4	4
303	Relationship of Membrane Curvature to the Formation of Pores by Magainin 2â€. Biochemistry, 1998, 37, 11856-11863.	1.2	435
304	Effects of Spontaneous Bilayer Curvature on Influenza Virus–mediated Fusion Pores. Journal of General Physiology, 1998, 112, 409-422.	0.9	63
305	Absence of chiral domains in mixtures of dipalmitoylphosphatidylcholine molecules of opposite chirality. Physical Review E, 1997, 55, 3751-3753.	0.8	21
306	Protein kinase C: An example of a calcium-regulated protein binding to membranes (Review). Molecular Membrane Biology, 1997, 14, 65-70.	2.0	19

#	Article	IF	CITATIONS
307	Chapter 6 Modulation of Lipid Polymorphism by Peptides. Current Topics in Membranes, 1997, 44, 237-252.	0.5	15
308	Role of Water in Protein Kinase C Catalysis and Its Binding to Membranesâ€. Biochemistry, 1997, 36, 2250-2256.	1.2	15
309	Structural Study of the Relationship between the Rate of Membrane Fusion and the Ability of the Fusion Peptide of Influenza Virus To Perturb Bilayersâ€. Biochemistry, 1997, 36, 7644-7651.	1.2	86
310	The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophysical Journal, 1997, 73, 3089-3111.	0.2	328
311	Influence of the Angle Subtended by the Positively Charged Helix Face on the Membrane Activity of Amphipathic, Antibacterial Peptides. Biochemistry, 1997, 36, 12869-12880.	1.2	149
312	Lipogastrins as potent inhibitors of viral fusion. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1327, 259-268.	1.4	6
313	Amphipathic peptide affects the lateral domain organization of lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1328, 125-139.	1.4	21
314	Role of Lipids in the Permeabilization of Membranes by Class L Amphipathic Helical Peptides. Biochemistry, 1997, 36, 9237-9245.	1.2	43
315	Structural Aspects of the Interaction of peptidyl-glycylleucine-carboxyamide, a Highly Potent Antimicrobial Peptide from Frog Skin, with Lipids. FEBS Journal, 1997, 248, 938-946.	0.2	85
316	Effect of N-acyl-phosphatidylethanolamine on the Membrane Fusion Between Sendai Virus and Liposome. Bioscience Reports, 1997, 17, 401-408.	1.1	8
317	Biophysical studies of lipopeptide-membrane interactions. Biopolymers, 1997, 43, 15-24.	1.2	57
318	High-resolution magic-angle spinning 1H nuclear magnetic resonance studies of lipid dispersions using spherical glass ampoules. Chemistry and Physics of Lipids, 1997, 90, 45-53.	1.5	14
319	Study of the phase behaviour of fully hydrated saturated diacyl phosphatidylserine/fatty acid mixtures with 31P-NMR and calorimetry. Chemistry and Physics of Lipids, 1997, 86, 161-169.	1.5	10
320	Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines. Biophysical Journal, 1996, 71, 1806-1810.	0.2	64
321	Nuclear magnetic resonance studies of lipid hydration in monomethyldioleoylphosphatidylethanolamine dispersions. Biophysical Journal, 1996, 70, 1412-1418.	0.2	26
322	Structural Study of the Interaction between the SIV Fusion Peptide and Model Membranesâ€. Biochemistry, 1996, 35, 980-989.	1.2	83
323	Glycophorin as a Receptor for Sendai Virus. Biochemistry, 1996, 35, 9513-9518.	1.2	47
324	Acyl Chain Dependence of Diacylglycerol Activation of Protein Kinase C Activityin Vitro. Biochemical and Biophysical Research Communications, 1996, 225, 469-473.	1.0	66

#	Article	IF	CITATIONS
325	Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1282, 293-302.	1.4	46
326	Fluorescent probes of membrane surface properties. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1284, 191-195.	1.4	31
327	Transbilayer inhibition of protein kinase C by the lipophosphoglycan from Leishmania donovani Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11634-11639.	3.3	66
328	Chemical specificity and physical properties of the lipid bilayer in the regulation of protein kinase C by anionic phospholipids: evidence for the lack of a specific binding site for phosphatidylserine Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1907-1912.	3.3	52
329	Effect of cholesterol on rhodopsin stability in disk membranes. BBA - Proteins and Proteomics, 1996, 1297, 77-82.	2.1	56
330	Functional roles of non-lamellar forming lipids. Chemistry and Physics of Lipids, 1996, 81, 101-104.	1.5	54
331	Inhibition of HIV-1-Induced Syncytia Formation and Infectivity by Lipophosphoglycan from Leishmania. Journal of Acquired Immune Deficiency Syndromes, 1995, 10, 496-505.	0.3	14
332	Role of phospholipids containing docosahexaenoyl chains in modulating the activity of protein kinase C Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9767-9770.	3.3	70
333	[15] Lipid-mediated a-factor interactions with artificial membranes. Methods in Enzymology, 1995, 250, 169-186.	0.4	6
334	Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers, 1995, 37, 319-338.	1.2	221
335	Ganglioside GD1a generates domains of high curvature in phosphatidylethanolamine liposomes as determined by solid state 31P-NMR spectroscopy. Chemistry and Physics of Lipids, 1995, 76, 103-108.	1.5	22
336	Estimation of cholesterol sulphate in blood plasma and in erythrocyte membranes from individuals with Down's syndrome or diabetes mellitus type I. Clinical Biochemistry, 1995, 28, 593-597.	0.8	10
337	Membrane components can modulate the substrate specificity of protein kinase C. Molecular and Cellular Biochemistry, 1995, 142, 125-130.	1.4	4
338	Comments on fluorescence methods for probing local deviations from lamellar packing. Journal of Fluorescence, 1995, 5, 3-8.	1.3	4
339	Mechanism of liposome destabilization by polycationic amino acids. Bioscience Reports, 1995, 15, 151-160.	1.1	20
340	Potent inhibition of viral fusion by the lipophosphoglycan of Leishmania donovani. Biochemistry, 1995, 34, 4676-4683.	1.2	64
341	The Role of the Ganglioside GD1a as a Receptor for Sendai Virus. Biochemistry, 1995, 34, 1084-1089.	1.2	40
342	Substrate-Induced Translocation of PKC-Î \pm to the Membrane. Archives of Biochemistry and Biophysics, 1995, 324, 216-222.	1.4	16

#	Article	IF	CITATIONS
343	Insulin Receptor Autophosphorylation and Signaling is Altered by Modulation of Membrane Physical Properties. Biochemistry, 1995, 34, 1815-1824.	1.2	64
344	In Vitro Assays of Protein Kinase C Activity. Analytical Biochemistry, 1994, 218, 241-247.	1.1	18
345	Analogues of tetramethylpyrazine affect membrane fluidity of liposomes: relationship to their biological activities. European Journal of Pharmacology, 1994, 266, 11-18.	2.7	12
346	Fusion of influenza to liposomes is not inhibited by aliphatic primary alcohols. Bioscience Reports, 1994, 14, 33-42.	1.1	1
347	Cationic Liposomes for Direct Gene Transfer in Therapy of Cancer and Other Diseases. Annals of the New York Academy of Sciences, 1994, 716, 23-35.	1.8	116
348	Calorimetric detection of curvature strain in phospholipid bilayers. Biophysical Journal, 1994, 66, 1450-1456.	0.2	63
349	Relationship Between the Infectivity of Influenza Virus and the Ability of Its Fusion Peptide to Perturb Bilayers. Biochemical and Biophysical Research Communications, 1994, 202, 1420-1425.	1.0	83
350	Membrane Orientation of the SIV Fusion Peptide Determines Its Effect on Bilayer Stability and Ability to Promote Membrane Fusion. Biochemical and Biophysical Research Communications, 1994, 205, 1938-1943.	1.0	72
351	Alamethicin Pyromellitate: An Ion-Activated Channel-Forming Peptide. Biochemistry, 1994, 33, 6850-6858.	1.2	37
352	The Binding of Peptides and Proteins to Membranes Containing Anionic Lipid. , 1994, , 237-249.		0
353	Effect of end group blockage on the properties of a class A amphipathic helical peptide. Proteins: Structure, Function and Bioinformatics, 1993, 15, 349-359.	1.5	115
354	Pyrazine derivatives affect membrane fluidity of vascular smooth muscle microsomes in relation to their biological activity. European Journal of Pharmacology, 1993, 244, 15-19.	2.7	8
355	Lipid concentration affects the kinetic stability of dielaidoylphosphatidylethanolamine bilayers. Chemistry and Physics of Lipids, 1993, 66, 181-187.	1.5	11
356	Direct evidence for the partial dehydration of phosphatidylethanolamine bilayers on approaching the hexagonal phase. Biochemistry, 1993, 32, 10700-10707.	1.2	40
357	Lysophosphatidylcholine mediates the mode of insertion of the NH2-terminal SIV fusion peptide into the lipid bilayer. FEBS Letters, 1993, 333, 325-330.	1.3	28
358	Structural requirements for the inhibition of membrane fusion by carbobenzoxy-d-Phe-Phe-Gly. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1152, 128-134.	1.4	23
359	Role of Membrane Defects in the Regulation of the Activity of Protein Kinase C. Archives of Biochemistry and Biophysics, 1993, 300, 378-383.	1.4	72
360	Calcium-Independent Activation of Protein Kinase C by the Dianionic Form of Phosphatidic Acid. Biochemical and Biophysical Research Communications, 1993, 190, 33-36.	1.0	16

#	Article	IF	CITATIONS
361	Role of prenylation in the interaction of the a-factor mating pheromone with phospholipid bilayers. Biochemistry, 1993, 32, 8368-8373.	1.2	30
362	Mechanism of activation of protein kinase C: roles of diolein and phosphatidylserine. Biochemistry, 1993, 32, 66-75.	1.2	89
363	Hydrophobicity curvature and membrane fusion. Trends in Biochemical Sciences, 1993, 18, 81.	3.7	4
364	Increased accumulation of drugs in a multidrug resistant cell line by alteration of membrane biophysical properties. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1175, 277-282.	1.9	70
365	Response to Koynova and Caffrey. Biophysical Journal, 1993, 65, 551.	0.2	0
366	Detection of hexagonal phase forming propensity in phospholipid bilayers. Biophysical Journal, 1993, 64, 290.	0.2	12
367	Circular dichroism (CD) studies of antagonists derived from parathyroid hormoneâ€related protein. International Journal of Peptide and Protein Research, 1993, 42, 342-345.	0.1	14
368	Inhibition of protein kinase C by cationic amphiphiles. Biochemistry, 1992, 31, 9025-9030.	1.2	137
369	Formation of a new stable phase of phosphatidylglycerols. Biophysical Journal, 1992, 63, 327-332.	0.2	53
370	Fatty-acid chain tilt angles and directions in dipalmitoyl phosphatidylcholine bilayers. Biophysical Journal, 1992, 63, 1170-1175.	0.2	76
371	Hydrophobic lipid additives affect membrane stability and phase behavior of N-monomethyldioleoylphosphatidylethanolamine. Biochemistry, 1992, 31, 671-677.	1.2	41
372	Growth hormone-releasing factor analogs with hydrophobic residues at position 19. Effects on growth hormone releasing activity in vitro and in vivo, stability in blood plasma in vitro, and secondary structure. Journal of Medicinal Chemistry, 1992, 35, 3928-3933.	2.9	9
373	Hexagonal phase forming propensity detected in phospholipid bilayers with fluorescent probes. Biochemistry, 1992, 31, 1550-1554.	1.2	60
374	On the mechanism of inhibition of viral and vesicle membrane fusion by carbobenzoxy-D-phenylalanyl-L-phenylalanylglycine. Biochemistry, 1992, 31, 3177-3183.	1.2	25
375	Dual modulation of protein kinase C activity by sphingosine. Biochemical and Biophysical Research Communications, 1992, 187, 635-640.	1.0	12
376	Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 239-246.	1.4	217
377	Zwitterionic amphiphiles that raise the bilayer to hexagonal phase transition temperature inhibit protein kinase C The exception that proves the rule. FEBS Letters, 1992, 304, 245-248.	1.3	13
378	A comparison of membrane properties and composition between cell lines selected and transfected for multi-drug resistance. British Journal of Cancer, 1992, 66, 781-786.	2.9	45

#	Article	IF	CITATIONS
379	Lipid vesicles which can bind to protein kinase C and activate the enzyme in the presence of EGTA. FEBS Journal, 1992, 208, 327-332.	0.2	23
380	Peptide models for the membrane destabilizing actions of viral fusion proteins. Biopolymers, 1992, 32, 309-314.	1.2	58
381	Phase behaviour of heteroacid phosphatidylserines and cholesterol. Chemistry and Physics of Lipids, 1992, 63, 105-113.	1.5	44
382	Mimicking the membrane-mediated conformation of dynorphin A-(1-13)-peptide: circular dichroism and nuclear magnetic resonance studies in methanolic solution. Biochemistry, 1991, 30, 4715-4726.	1.2	31
383	Action of insulin in rat adipocytes and membrane properties. Biochemistry, 1991, 30, 2092-2098.	1.2	6
384	Effects of the â€~fusion peptide' from measles virus on the structure of N-methyl dioleoylphosphatidylethanolamine membranes and their fusion with Sendai virus. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1065, 49-53.	1.4	38
385	Autoradiographic Localization of Human Calcitonin Sensitive Binding Sites in Rat Brain. The Japanese Journal of Pharmacology, 1991, 56, 551-555.	1.2	0
386	Autoradiographic Localization of Human Calcitonin Sensitive Binding Sites in Rat Brain The Japanese Journal of Pharmacology, 1991, 56, 551-555.	1.2	7
387	Evidence for the regulation of the activity of protein kinase C through changes in membrane properties. Bioscience Reports, 1991, 11, 59-64.	1.1	34
388	Reversal of intrinsic multidrug resistance in Chinese hamster ovary cells by amiloride analogs. British Journal of Cancer, 1991, 63, 247-251.	2.9	16
389	Promotion of hexagonal phase formation and lipid mixing by fatty acids with varying degrees of unsaturation. Chemistry and Physics of Lipids, 1991, 57, 75-80.	1.5	72
390	Biological Consequences of Alterations in the Physical Properties of Membranes. , 1991, , 135-147.		3
391	Conformational Correlates of the Epitopes of Human Myelin Basic Protein Peptide 80?89. Journal of Neurochemistry, 1990, 55, 568-576.	2.1	20
392	Investigation of the relationship between altered intracellular pH and multidrug resistance in mammalian cells. British Journal of Cancer, 1990, 61, 568-572.	2.9	70
393	Study of a series of analogs of salmon calcitonin in which alanine replaces leucine. FEBS Journal, 1990, 188, 633-635.	0.2	11
394	Inhibition of protein kinase C by oxidation products of retinol. Bioscience Reports, 1990, 10, 389-392.	1.1	1
395	Hydrogen bonding and the thermotropic transitions of phosphatidylethanolamines. Chemistry and Physics of Lipids, 1990, 52, 227-230.	1.5	32
396	Cholesteryl phosphate and cholesteryl pyrophosphate inhibit formation of the hexagonal phase. Chemistry and Physics of Lipids, 1990, 55, 49-53.	1.5	9

#	Article	IF	CITATIONS
397	Rat brain calcitonin receptor subtypes: binding studies with non-helical analogs. The Japanese Journal of Pharmacology, 1990, 52, 120.	1.2	0
398	Evidence for Calcitonin Receptor Heterogeneity: Binding Studies with Nonhelical Analogs*. Endocrinology, 1990, 127, 163-169.	1.4	45
399	Relationship of phospholipid hexagonal phases to biological phenomena. Biochemistry and Cell Biology, 1990, 68, 17-23.	0.9	51
400	The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends in Pharmacological Sciences, 1990, 11, 317-320.	4.0	144
401	Dimerization of the P-glycoprotein in membranes. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1027, 225-228.	1.4	53
402	Interaction of calcium and cholesterol sulphate induces membrane destabilization and fusion: implications for the acrosome reaction. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1024, 367-372.	1.4	30
403	Counter-regulatory effects of phosphatidic acid on protein kinase C activity in the presence of calcium and diolein. Biochemical and Biophysical Research Communications, 1990, 171, 487-490.	1.0	27
404	Reduced membrane fluidity in platelets from diabetic patients. Diabetes, 1990, 39, 241-244.	0.3	33
405	Calcitonin inhibits the rise of intracellular calcium induced by thyrotropin-releasing hormone in GH3 cells. Cell Calcium, 1989, 10, 145-149.	1.1	6
406	Studies on the mechanism of action of a bilayer stabilizing inhibitor of protein kinase C: Cholesterylphosphoryldimethylethanolamine. Bioscience Reports, 1989, 9, 315-328.	1.1	11
407	Increased cellular internalization of amphiphiles in a multidrug-resistant CHO cell line. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1014, 53-56.	1.9	6
408	Dependence of the bilayer to hexagonal phase transition on amphiphile chain length. Biochemistry, 1989, 28, 9398-9402.	1.2	21
409	Secondary structure of charge isomers of myelin basic protein before and after phosphorylation. Biochemistry, 1989, 28, 6538-6543.	1.2	56
410	Role of the stereochemistry of the hydroxyl group of cholesterol and the formation of nonbilayer structures in phosphatidylethanolamines. Biochemistry, 1989, 28, 8928-8934.	1.2	74
411	Inhibition of protein kinase C by sphingosine correlates with the presence of positive charge. Biochemical and Biophysical Research Communications, 1989, 164, 102-107.	1.0	38
412	Tetraalkylammonium salts and phospholipid polymorphism. Journal of the American Chemical Society, 1989, 111, 6833-6835.	6.6	5
413	Potent inhibitors of glucagon-stimulated adenylate cyclase associated with serum lipoprotein particles. Biochemistry and Cell Biology, 1989, 67, 759-762.	0.9	1
414	Role of peptide structure in lipid-peptide interactions: nuclear magnetic resonance study of the interaction of pentagastrin and [Arg4]pentagastrin with dimyristolyphosphatidylcholine. Chemistry and Physics of Lipids, 1988, 49, 105-110.	1.5	7

#	Article	IF	CITATIONS
415	Kinetic effects in the differential scanning calorimetry cooling scans of phosphatidylethanolamines. Chemistry and Physics of Lipids, 1988, 49, 101-104.	1.5	24
416	The secondary structure of a membrane-embedded peptide from the carboxy terminus of lipophilin as revealed by circular dichorism. BBA - Proteins and Proteomics, 1988, 952, 230-237.	2.1	2
417	The relationship between the bilayer to hexagonal phase transition temperature in membranes and protein kinase C activity. Bioscience Reports, 1988, 8, 49-54.	1.1	29
418	Deletion sequences of salmon calcitonin that retain the essential biological and conformational features of the intact molecule. Journal of Medicinal Chemistry, 1988, 31, 1595-1598.	2.9	26
419	Acid-induced fusion of liposomes: studies with 2,3-seco-5α-cholestan-2,3-dioic acid. Biochimica Et Biophysica Acta - Biomembranes, 1988, 940, 85-92.	1.4	13
420	25-Hydroxycholesterol promotes myelin basic protein-induced leakage of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1988, 938, 131-134.	1.4	5
421	Effects of sugar alcohols and disaccharides in inducing the hexagonal phase and altering membrane properties: implications for diabetes mellitus. Biochimica Et Biophysica Acta - Biomembranes, 1988, 943, 485-492.	1.4	57
422	Determination of the phase behaviour of phosphatidylethanolamine admixed with other lipids and the effects of calcium chloride: implications for protein kinase C regulation. Biochimica Et Biophysica Acta - Biomembranes, 1988, 944, 144-154.	1.4	79
423	Modulation of the bilayer to hexagonal phase transition of phosphatidylethanolamines by acylglycerols. Biochimica Et Biophysica Acta - Biomembranes, 1988, 945, 161-166.	1.4	44
424	Modulation of the bilayer to hexagonal phase transition and solvation of phosphatidylethanolamines in aqueous salt solutions. Biochemistry, 1988, 27, 8776-8779.	1.2	51
425	Biologically active calcitonin analogs which have minimal interactions with phospholipids. Biochemical and Biophysical Research Communications, 1988, 152, 203-207.	1.0	26
426	Calcitonin inhibition of prolactin secretion in isolated rat pituitary cells. Journal of Endocrinology, 1988, 116, 279-286.	1.2	33
427	Relationship between the antiviral activity of peptides and the stabilization of membrane bilayers. , 1988, , 335-337.		1
428	STRUCTURAL, FUNCTIONAL, AND CLINICAL ASPECTS OF MYELIN PROTEINS. , 1988, , 231-265.		2
429	Infrared spectroscopic evidence of conformational transitions of an atrial natriuretic peptide Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7028-7030.	3.3	51
430	Conformational determinants in receptor recognition of peptide hormones: interaction of parathyroid hormone with the glucagon receptor. Molecular and Cellular Endocrinology, 1987, 49, 203-210.	1.6	10
431	Cyclosporine A inhibits herpes simplex virus-induced cell fusion but not virus penetration into cells. Virology, 1987, 159, 1-9.	1.1	37
432	Structural properties of acidic phospholipids in complexes with calcitonin: a Fourier transform infrared spectroscopic investigation. Biochimica Et Biophysica Acta - Biomembranes, 1987, 899, 307-310	1.4	11

#	Article	IF	CITATIONS
433	Modulation of the phase transition behavior of phosphatidylethanolamine by cholesterol and oxysterols. Biochemistry, 1987, 26, 1820-1825.	1.2	91
434	The shape of the gel to liquid crystalline phase transition of dielaidoylphosphatidylethanolamine is markedly dependent on the method of sample preparation. Chemistry and Physics of Lipids, 1987, 43, 129-134.	1.5	6
435	Bilayer stabilizing peptides and the inhibition of viral infection: antimeasles activity of carbobenzoxy-Ser-Leu-amide. Bioscience Reports, 1987, 7, 745-749.	1.1	17
436	Comparison of the interaction of the anti-viral chemotherapeutic agents amantadine and tromantadine with model phospholipid membranes. Bioscience Reports, 1987, 7, 225-230.	1.1	14
437	The relationship between the effects of drugs on bilayer stability and on protein kinase C activity. Chemico-Biological Interactions, 1987, 63, 239-247.	1.7	56
438	Biologically potent analogues of salmon calcitonin which do not contain an N-terminal disulfide-bridged ring structure. FEBS Journal, 1987, 162, 399-402.	0.2	37
439	Interaction of atriopeptin III with lipids and detergents. International Journal of Peptide and Protein Research, 1987, 29, 238-243.	0.1	15
440	Phospholipid structure determines the effects of peptides on membranes. Differential scanning calorimetry studies with pentagastrin-related peptides. Biochimica Et Biophysica Acta - Biomembranes, 1986, 856, 290-300.	1.4	22
441	Modulation of myelin basic protein-induced aggregation and fusion of liposomes by cholesterol, aliphatic aldehydes and alkanes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 863, 45-52.	1.4	28
442	Effect of electrostatic repulsion on the morphology and thermotropic transitions of anionic phospholipids. FEBS Letters, 1986, 209, 257-260.	1.3	61
443	Conformational flexibility and biological activity of salmon calcitonin. Biochemistry, 1986, 25, 1964-1968.	1.2	74
444	Fluorescence studies on a membrane-embedded peptide from the carboxy terminus of lipophilin. Biochemistry, 1986, 25, 562-566.	1.2	13
445	The hydrophobic moment of the amphipathic helix of salmon calcitonin and biological potency. FEBS Journal, 1986, 159, 125-127.	0.2	16
446	Virus replication inhibitory peptide inhibits the conversion of phospholipid bilayers to the hexagonal phase. Bioscience Reports, 1986, 6, 647-653.	1.1	52
447	Conformational and biological properties of partial sequences of salmon calcitonin. International Journal of Peptide and Protein Research, 1986, 27, 501-507.	0.1	19
448	The Presence of Aldehyde-Reacted Proteins in Normal and Multiple Sclerosis White Matter. Journal of Neurochemistry, 1985, 45, 1223-1227.	2.1	3
449	A comparison of the interaction of glucagon, human parathyroid hormone-(1-34)-peptide and calcitonin with dimyristoylphosphatidylglycerol and with dimyristoylphosphatidylcholine. Biophysical Chemistry, 1985, 23, 39-48.	1.5	24
450	High sensitivity differential scanning calorimetry of the bilayer to hexagonal phase transitions of diacylphosphatidylethanolamines. Chemistry and Physics of Lipids, 1985, 36, 387-393.	1.5	67

#	Article	IF	CITATIONS
451	The liver plasma membrane Ca2+ pump: Hormonal sensitivity. Biochimie, 1985, 67, 1169-1176.	1.3	12
452	Role of peptide structure in lipid-peptide interactions: high-sensitivity differential scanning calorimetry and electron spin resonance studies of the structural properties of dimyristoylphosphatidylcholine membranes interacting with pentagastrin-related pentapeptides. Biochemistry, 1985, 24, 3135-3144.	1.2	27
453	Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry, 1985, 24, 7092-7095.	1.2	248
454	Aliphatic aldehydes promote myelin basic protein-induced fusion of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1985, 820, 319-323.	1.4	6
455	Presence of an amphipathic helical segment and its relationship to biological potency of calcitonin analogs. International Journal of Peptide and Protein Research, 1985, 25, 105-111.	0.1	45
456	Formation of waterâ€soluble complex between the 1–34 fragment of parathyroid hormone and dimyristoylphosphatidylcholine. International Journal of Peptide and Protein Research, 1985, 25, 594-600.	0.1	33
457	The effects of various peptides on the thermotropic properties of phosphatidylcholine bilayers. Biophysical Chemistry, 1984, 19, 355-362.	1.5	9
458	Effect of Lipid Structure on the Capacity of Myelin Basic Protein to Alter Vesicle Properties: Potent Effects of Aliphatic Aldehydes in Promoting Basic Protein-Induced Vesicle Aggregation. Journal of Neurochemistry, 1984, 43, 1550-1555.	2.1	17
459	Phospholipid vesicle aggregation induced by human myelin basic protein. Neurochemical Research, 1984, 9, 241-248.	1.6	8
460	Role of peptide structure in lipid-peptide interactions: a fluorescence study of the binding of pentagastrin-related pentapeptides to phospholipid vesicles. Biochemistry, 1984, 23, 6072-6077.	1.2	100
461	Effects of lipid structure on peptide-lipid interactions complexes of salmon calcitonin with phosphatidylglycerol and with phosphatidic acid. Biochimica Et Biophysica Acta - Biomembranes, 1984, 772, 264-272.	1.4	8
462	Effect of phase transitions on the interaction of peptides and proteins with phospholipids. Canadian Journal of Biochemistry and Cell Biology, 1984, 62, 1167-1173.	1.3	25
463	Relationships among several different non-homologous polypeptide hormones. Molecular and Cellular Biochemistry, 1983, 57, 41-7.	1.4	30
464	The amphipathic helix: its possible role in the interaction of glucagon and other peptide hormones with membrane receptor sites. Trends in Biochemical Sciences, 1983, 8, 205-207.	3.7	26
465	Effect of specific trinitrophenylation of the lysine epsilon amino group of glucagon on receptor binding and adenylate cyclase activation. Archives of Biochemistry and Biophysics, 1983, 225, 102-109.	1.4	ο
466	Studies on the complex formed between glucagon and dicaprylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1983, 733, 75-86.	1.4	2
467	The existence of a highly ordered phase in fully hydrated dilauroylphosphatidylethanolamine. Biochimica Et Biophysica Acta - Biomembranes, 1983, 728, 319-324.	1.4	104
468	Amphipathic helix and its relationship to the interaction of calcitonin with phospholipids. Biochemistry, 1983, 22, 5074-5084.	1.2	128

#	Article	IF	CITATIONS
469	The biological activity of glucagon–phospholipid complexes. Canadian Journal of Biochemistry and Cell Biology, 1983, 61, 688-691.	1.3	2
470	Conformational and biological properties of glucagon fragments containing residues 1–17 and 19–29. International Journal of Peptide and Protein Research, 1983, 22, 362-370.	0.1	4
471	The role of dietary ergothioneine in the development of diabetes mellitus. Medical Hypotheses, 1982, 9, 207-213.	0.8	11
472	Identification of the glucagon receptor by covalent labeling with a radiolabeled photoreactive glucagon analog. Biochemistry, 1982, 21, 1996-2004.	1.2	19
473	Binding of a glucagon photoaffinity label to rat liver plasma membranes and its effect on adenylate cyclase activity before and after photolysis. Biochemistry, 1982, 21, 1989-1996.	1.2	16
474	The effect of bovine myelin basic protein on the phase transition properties of sphingomyelin. Biochimica Et Biophysica Acta - Biomembranes, 1982, 685, 230-232.	1.4	21
475	Interaction of glucagon with sphingomyelins. Biochimica Et Biophysica Acta - Biomembranes, 1982, 692, 330-338.	1.4	10
476	Volume properties of mixtures of lipophilin and dimyristoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1982, 693, 27-33.	1.4	5
477	The apparent preferential interaction of human plasma high density apolipoprotein A-I with gel-state phospholipids. Lipids and Lipid Metabolism, 1982, 712, 146-151.	2.6	13
478	Studies on the Interaction of Glucagon with Phospholipids. Biophysical Journal, 1982, 37, 163-164.	0.2	3
479	Differential acid stabilities of citraconylated amino groups of glucagon Preparation of Nα-Citraconyl glucagon and evaluation of its biological properties. BBA - Proteins and Proteomics, 1982, 707, 171-177.	2.1	2
480	Lipolytic and adenyl-cyclase-stimulating activity of glucagon1–6: comparison with glucagon derivatives chemically modified in the 7–29 sequence. Bioscience Reports, 1982, 2, 819-824.	1.1	3
481	Lipolytic and adenyl-cyclase-stimulating activity of Nα-trinitrophenyl glucagon: Comparison with other glucagon derivatives modifed at the amino terminus. Bioscience Reports, 1982, 2, 163-167.	1.1	5
482	The condensing effect of glucagon on phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1981, 649, 608-615.	1.4	21
483	Calorimetric study of peptide-phospholipid interactions: the glucagon-dimyristoylphosphatidylcholine complex. Biochemistry, 1981, 20, 4603-4606.	1.2	54
484	A densitometric study of the effects of free fatty acids on the phase transition of dimyristoylphosphatidylcholine bilayers. Chemistry and Physics of Lipids, 1981, 28, 159-164.	1.5	7
485	Studies of thermotropic phospholipid phase transitions using scanning densitometry. Chemistry and Physics of Lipids, 1980, 27, 139-150.	1.5	44
486	Effect of microheterogeneity on the structure and function of the myelin basic protein. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1980, 625, 165-178.	1.7	19

#	Article	IF	CITATIONS
487	The effect of cholesterol on the interaction of glucagon with the gel state of dimyristoylphosphatidylcholine. Canadian Journal of Biochemistry, 1980, 58, 859-864.	1.4	8
488	The role of the phospholipid phase transition in the regulation of glucagon binding to lecithin. Biochimica Et Biophysica Acta - Biomembranes, 1980, 602, 600-609.	1.4	21
489	Synthesis and characterization of a heterobifunctional photoaffinity reagent for modification of tryptophan residues and its application to the preparation of a photoreactive glucagon derivative. Biochemistry, 1980, 19, 4539-4546.	1.2	36
490	Nα-Trinitrophenyl glucagon An inhibitor of glucagon-stimulated cyclic AMP production and its effects on glycogenolysis. Biochimica Et Biophysica Acta - General Subjects, 1979, 582, 295-306.	1.1	37
491	The effect of free fatty acids on the thermotropic phase transition of dimyristoyl glycerophosphocholine. Chemistry and Physics of Lipids, 1978, 22, 245-253.	1.5	75
492	Intrinsic fluorescence of a hydrophobic myelin protein and some complexes with phospholipids. Biochemistry, 1978, 17, 630-637.	1.2	42
493	Pressure-induced changes in the nuclear magnetic resonance spectra of a biopolymer in aqueous solution. Biochemistry, 1978, 17, 1506-1509.	1.2	8
494	Circular dichroism studies on lipid-protein complexes of a hydrophobic myelin protein. Biochemistry, 1978, 17, 624-629.	1.2	58
495	Size and shape of the model lipoprotein complex formed between glucagon and dimyristoylglycerophosphocholine. Biochemistry, 1978, 17, 2301-2307.	1.2	48
496	Stimulation of the release of prostaglandins from polymorphonuclear leukocytes by the calcium ionophore A23187. FEBS Letters, 1978, 86, 255-258.	1.3	37
497	Studies on the effect of the lipid phase transition on the interaction of glucagon with dimyristoyl glycerophosphocholine. Biochimica Et Biophysica Acta - Biomembranes, 1978, 514, 185-197.	1.4	22
498	Lipoprotein Complexes between Glucagon and Dimyristoylglycerophosphocholine (Dimyristoyl) Tj ETQq0 0 0 rgB	T /Overloc 1.6	k 10 Tf 50 30
499	Molecular interactions in the model lipoprotein complex formed between glucagon and dimyristoylglycerophosphocholine. Biochemistry, 1977, 16, 4360-4368.	1.2	55
500	Preferential interaction of pentagastrin with the gel state of dimyristoyl glycerophosphocholine. Biochimica Et Biophysica Acta - Biomembranes, 1977, 471, 412-420.	1.4	5
501	Interaction of glucagon with dimyristoyl glycerophosphocholine. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1977, 491, 296-304.	1.7	61
502	Biologic activity and conformational properties of glucagon and glucagon analogs. Metabolism: Clinical and Experimental, 1976, 25, 1317-1318.	1.5	12
503	Studies on chemically modified forms of the myelin basic protein: Requirements for encephalitogenicity. FEBS Letters, 1976, 66, 290-292.	1.3	1
504	Conformational and biological properties of a covalently linked dimer of glucagon Reaction of mono- and bifunctional sulfenyl halides. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1976, 453, 365-373.	1.7	17

#	Article	IF	CITATIONS
505	Regulation of glucagon-stimulated production of glucose in rat liver by guanosine 3′,5′-cyclic phosphate. Canadian Journal of Physiology and Pharmacology, 1976, 54, 834-837.	0.7	2
506	The effects of the trinitrophenylation of the amino groups of glucagon on its conformational properties and on its ability to activate rat liver adenylyl cyclase. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1975, 393, 236-246.	1.7	22
507	A STUDY OF THE UNFOLDING OF THE INHIBITED SUBTILISIN IN GUANIDINE HYDROCHLORIDE. International Journal of Peptide and Protein Research, 1975, 7, 135-142.	0.1	4
508	A Study of the Conformational Properties of Glucagon in the Presence of Glycols. Canadian Journal of Biochemistry, 1974, 52, 456-468.	1.4	25
509	Circular dichroism and proton magnetic resonance studies of random chain poly-L-lysine. Biopolymers, 1974, 13, 359-369.	1.2	24
510	The ordered structure of the encephalitogenic protein from normal human myelin. Biophysical Chemistry, 1974, 2, 290-295.	1.5	23
511	The Folded Conformation of the Encephalitogenic Protein of the Human Brain. Biochemistry, 1974, 13, 1264-1267.	1.2	105
512	Non-equivalence of the carboxyl groups of glucagon in the carbodiimide-promoted reaction with nucleophiles and the role of carboxyl groups in the ability of glucagon to stimulate the adenyl cyclase of rat liver. Biochimica Et Biophysica Acta - General Subjects, 1974, 372, 440-449.	1.1	8
513	Subcellular localization and some properties of the adenylate cyclase activity of the yeast, Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 1974, 372, 15-22.	1.1	18
514	The application of surface tension measurements to the study of conformational transitions in aqueous solutions of poly-L-lysine. Biopolymers, 1973, 12, 1945-1957.	1.2	25
515	INTRAMOLECULAR SINGLET EXCITATION TRANSFER IN GLUCAGON*. Photochemistry and Photobiology, 1973, 18, 245-247.	1.3	7
516	The effect of glucagon antibodies on plasma glucose and insulin levels. Biochimica Et Biophysica Acta - General Subjects, 1973, 320, 741-744.	1.1	10
517	The essential role of the imidazole group of glucagon in its biological function. Archives of Biochemistry and Biophysics, 1973, 154, 132-136.	1.4	22
518	Conformational flexibility of a myelin protein. Biochemistry, 1973, 12, 3402-3406.	1.2	53
519	Studies on the Alkaline Denaturation of Glucagon. Canadian Journal of Biochemistry, 1973, 51, 140-147.	1.4	9
520	Conformational and Biological Properties of Partial Sequences of Glucagon. Canadian Journal of Physiology and Pharmacology, 1973, 51, 243-248.	0.7	18
521	Carboxyl group modification in glucagon. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1972, 285, 176-180.	1.7	12
522	Reversible unfolding of glucagon by urea and temperature changes. Archives of Biochemistry and Biophysics, 1972, 148, 325-326.	1.4	11

#	Article	IF	CITATIONS
523	Evidence for the compact conformation of monomeric glucagon. Hydrogen-tritium exchange studies. Biochemistry, 1972, 11, 3571-3575.	1.2	20
524	Conformational Properties of Cyanogen Bromide-cleaved Glucagon. Journal of Biological Chemistry, 1972, 247, 2132-2138.	1.6	33
525	Studies on the Conformation of Glucagon. Canadian Journal of Biochemistry, 1971, 49, 166-169.	1.4	27
526	Evidence against the obligatory formation of an acyl enzyme intermediate in the â ⁻ •chymotrypsin catalyzed reactions of amides. Biochemical and Biophysical Research Communications, 1969, 37, 313-318.	1.0	20
527	The helix-coil transition of poly-L-lysine in methanol-water solvent mixtures. Biopolymers, 1968, 6, 1383-1386.	1.2	98
528	Conformations of poly-L-valine in solution. Biopolymers, 1968, 6, 1551-1571.	1.2	71
529	The influence of long-range interactions on the structure of myoglobin. Biochemistry, 1968, 7, 2864-2872.	1.2	174
530	Assignment of the histidine peaks in the nuclear magnetic resonance spectrum of ribonuclease Proceedings of the National Academy of Sciences of the United States of America, 1968, 60, 766-772.	3.3	144
531	Enthalpy of stacking in single-stranded polyriboadenylic acid. Journal of the American Chemical Society, 1967, 89, 3888-3892.	6.6	30
532	Stable Conformations of Polyamino Acid Helices1. Journal of the American Chemical Society, 1966, 88, 5680-5681.	6.6	23
533	On the Question of an Acyl-enzyme Intermediate in the Chymotrypsin-catalyzed Hydrolysis of Hydroxamic Acids. Journal of Biological Chemistry, 1963, 238, PC3138-PC3140.	1.6	16
534	Evidence for the Formation of Hippuryl Chymotrypsin during the Hydrolysis of Hippuric Acid Esters. Journal of Biological Chemistry, 1963, 238, 1718-1723.	1.6	44
535	Membrane Lipid Polymorphism: Relationship to Bilayer Properties and Protein Function. , 0, , 15-26.		1