Carter Van Waes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988654/publications.pdf

Version: 2024-02-01

76 papers 5,076 citations

38 h-index 98798 67 g-index

77 all docs

77
docs citations

77 times ranked 8198 citing authors

#	Article	IF	CITATIONS
1	Inhibiting WEE1 and IKK-RELA Crosstalk Overcomes TNFα Resistance in Head and Neck Cancers. Molecular Cancer Research, 2022, 20, 867-882.	3.4	5
2	Abstract 2988: Proteasomal deubiquitinases represent an attractive therapeutic target in head and neck squamous cell carcinomas (HNSCC). Cancer Research, 2022, 82, 2988-2988.	0.9	1
3	Death agonist antibody against TRAILR2/DR5/TNFRSF10B enhances birinapant anti-tumor activity in HPV-positive head and neck squamous cell carcinomas. Scientific Reports, 2021, 11, 6392.	3.3	1
4	The Proteomic Landscape of Growth Factor Signaling Networks Associated with <i>FAT1</i> Mutations in Head and Neck Cancers. Cancer Research, 2021, 81, 4402-4416.	0.9	16
5	Pharmacological Inhibition of HSP90 Radiosensitizes Head and Neck Squamous Cell Carcinoma Xenograft by Inhibition of DNA Damage Repair, Nucleotide Metabolism, and Radiation-Induced Tumor Vasculogenesis. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1295-1305.	0.8	6
6	Comprehensive multiomic characterization of human papillomavirus-driven recurrent respiratory papillomatosis reveals distinct molecular subtypes. Communications Biology, 2021, 4, 1416.	4.4	10
7	A comprehensive, multidisciplinary, precision medicine approach to discover effective therapy for an undiagnosed, progressive, fibroinflammatory disease. Translational Research, 2020, 215, 31-40.	5.0	O
8	Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen–Specific T Cells. Clinical Cancer Research, 2020, 26, 679-689.	7.0	49
9	Regulation of NFκB Signalling by Ubiquitination: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma?. Cancers, 2020, 12, 2877.	3.7	20
10	ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer. Oncolmmunology, 2020, 9, 1710398.	4.6	30
11	Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells. ELife, 2020, 9, .	6.0	32
12	Enhancing direct cytotoxicity and response to immune checkpoint blockade following ionizing radiation with Wee1 kinase inhibition. Oncolmmunology, 2019, 8, e1638207.	4.6	39
13	Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral Oncology, 2019, 95, 127-135.	1.5	103
14	Dual Antagonist of cIAP/XIAP ASTX660 Sensitizes HPVâ [*] and HPV+ Head and Neck Cancers to TNFα, TRAIL, and Radiation Therapy. Clinical Cancer Research, 2019, 25, 6463-6474.	7.0	28
15	Head and Neck Cancers Promote an Inflammatory Transcriptome through Coactivation of Classic and Alternative NF-κB Pathways. Cancer Immunology Research, 2019, 7, 1760-1774.	3.4	17
16	Integrated Genomic and Functional microRNA Analysis Identifies miR-30-5p as a Tumor Suppressor and Potential Therapeutic Nanomedicine in Head and Neck Cancer. Clinical Cancer Research, 2019, 25, 2860-2873.	7.0	68
17	Lymphotoxinâ€Î² receptorâ€NIK signaling induces alternative RELB/NFâ€ÎºB2 activation to promote metastatic gene expression and cell migration in head and neck cancer. Molecular Carcinogenesis, 2019, 58, 411-425.	2.7	16
18	Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight, 2019, 4, .	5.0	168

#	Article	IF	CITATIONS
19	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	6.4	245
20	Nanocomplex-based <i>TP53</i> gene therapy promotes anti-tumor immunity through TP53- and STING-dependent mechanisms. Oncolmmunology, 2018, 7, e1404216.	4.6	26
21	PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation. Oncolmmunology, 2018, 7, e1395996.	4.6	90
22	Genomic and Transcriptomic Characterization Links Cell Lines with Aggressive Head and Neck Cancers. Cell Reports, 2018, 25, 1332-1345.e5.	6.4	66
23	Targeting Notch1 and IKKα Enhanced NF-κB Activation in CD133+ Skin Cancer Stem Cells. Molecular Cancer Therapeutics, 2018, 17, 2034-2048.	4.1	22
24	WEE1 kinase inhibition reverses G2/M cell cycle checkpoint activation to sensitize cancer cells to immunotherapy. Oncolmmunology, 2018, 7, e1488359.	4.6	41
25	Antagonist of cIAP1/2 and XIAP enhances anti-tumor immunity when combined with radiation and PD-1 blockade in a syngeneic model of head and neck cancer. Oncolmmunology, 2018, 7, e1471440.	4.6	43
26	Attenuated TRAF3 Fosters Activation of Alternative NF-κB and Reduced Expression of Antiviral Interferon, TP53, and RB to Promote HPV-Positive Head and Neck Cancers. Cancer Research, 2018, 78, 4613-4626.	0.9	27
27	A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell, 2017, 31, 820-832.e3.	16.8	433
28	Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3KÎ \hat{l} 3. Cancer Research, 2017, 77, 2607-2619.	0.9	165
29	Genetic alterations in TRAF3 and CYLD that regulate nuclear factor κB and interferon signaling define head and neck cancer subsets harboring human papillomavirus. Cancer, 2017, 123, 1695-1698.	4.1	5
30	Therapeutic Small Molecules Target Inhibitor of Apoptosis Proteins in Cancers with Deregulation of Extrinsic and Intrinsic Cell Death Pathways. Clinical Cancer Research, 2017, 23, 1379-1387.	7.0	117
31	Genomics and advances towards precision medicine for head and neck squamous cell carcinoma. Laryngoscope Investigative Otolaryngology, 2017, 2, 310-319.	1.5	12
32	Cisplatin Alters Antitumor Immunity and Synergizes with PD-1/PD-L1 Inhibition in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2017, 5, 1141-1151.	3.4	160
33	Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget, 2017, 8, 55804-55820.	1.8	75
34	Unilateral Cervical Polyneuropathies following Concurrent Bortezomib, Cetuximab, and Radiotherapy for Head and Neck Cancer. Case Reports in Otolaryngology, 2016, 2016, 1-5.	0.2	5
35	Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncology, 2016, 58, 59-70.	1.5	115
36	Enhanced Tumor Control with Combination mTOR and PD-L1 Inhibition in Syngeneic Oral Cavity Cancers. Cancer Immunology Research, 2016, 4, 611-620.	3.4	73

3

#	Article	IF	Citations
37	SMAC Mimetic Birinapant plus Radiation Eradicates Human Head and Neck Cancers with Genomic Amplifications of Cell Death Genes <i>FADD</i> and <i>BIRC2</i> Cancer Research, 2016, 76, 5442-5454.	0.9	59
38	Established T Cell–Inflamed Tumors Rejected after Adaptive Resistance Was Reversed by Combination STING Activation and PD-1 Pathway Blockade. Cancer Immunology Research, 2016, 4, 1061-1071.	3.4	114
39	Pools of programmed deathâ€ligand within the oral cavity tumor microenvironment: Variable alteration by targeted therapies. Head and Neck, 2016, 38, 1176-1186.	2.0	17
40	Clonally expanded CD4 ⁺ T cells can produce infectious HIV-1 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1883-1888.	7.1	302
41	Conditional deletion of nonmuscle myosin Il-A in mouse tongue epithelium results in squamous cell carcinoma. Scientific Reports, 2015, 5, 14068.	3.3	45
42	Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches. Cancers, 2015, 7, 2397-2414.	3.7	61
43	MEK Inhibitor PD-0325901 Overcomes Resistance to PI3K/mTOR Inhibitor PF-5212384 and Potentiates Antitumor Effects in Human Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2015, 21, 3946-3956.	7.0	60
44	<i>CCR</i> 20th Anniversary Commentary: Preclinical Study of Proteasome Inhibitor Bortezomib in Head and Neck Cancer. Clinical Cancer Research, 2015, 21, 942-943.	7.0	7
45	Radiation Enhancement of Head and Neck Squamous Cell Carcinoma by the Dual PI3K/mTOR Inhibitor PF-05212384. Clinical Cancer Research, 2015, 21, 2792-2801.	7.0	62
46	Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer. Cell and Bioscience, 2015, 5, 53.	4.8	29
47	Genetic Landscape of Human Papillomavirus–Associated Head and Neck Cancer and Comparison to Tobacco-Related Tumors. Journal of Clinical Oncology, 2015, 33, 3227-3234.	1.6	125
48	mTOR and MEK1/2 inhibition differentially modulate tumor growth and the immune microenvironment in syngeneic models of oral cavity cancer. Oncotarget, 2015, 6, 36400-36417.	1.8	43
49	CK2 Phosphorylates and Inhibits TAp73 Tumor Suppressor Function to Promote Expression of Cancer Stem Cell Genes and Phenotype in Head and Neck Cancer. Neoplasia, 2014, 16, 789-800.	5.3	27
50	Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncology, 2014, 50, 930-941.	1.5	46
51	PI3K/mTOR Inhibitor PF-04691502 Antitumor Activity Is Enhanced with Induction of Wild-Type TP53 in Human Xenograft and Murine Knockout Models of Head and Neck Cancer. Clinical Cancer Research, 2013, 19, 3808-3819.	7.0	73
52	Signaling Networks of Activated Oncogenic and Altered Tumor Suppressor Genes in Head and Neck Cancer. Journal of Carcinogenesis & Mutagenesis, 2013, Suppl 7, 4.	0.3	5
53	Targeting NF-l̂ºB in Mouse Models of Lung Adenocarcinoma: Figure 1 Cancer Discovery, 2011, 1, 200-202.	9.4	4
54	Molecular and Clinical Responses in a Pilot Study of Gefitinib With Paclitaxel and Radiation in Locally Advanced Head-and-Neck Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 77, 447-454.	0.8	33

#	Article	IF	CITATIONS
55	Nuclear Factor-ÂB in Development, Prevention, and Therapy of Cancer. Clinical Cancer Research, 2007, 13, 1076-1082.	7.0	296
56	Inhibitor-κB Kinase in Tumor Promotion and Suppression During Progression of Squamous Cell Carcinoma. Clinical Cancer Research, 2007, 13, 4956-4959.	7.0	27
57	Role of activated nuclear factor- \hat{P} B in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head and Neck, 2007, 29, 959-971.	2.0	99
58	Inhibition of nuclear factor-κB and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma. International Journal of Radiation Oncology Biology Physics, 2005, 63, 1400-1412.	0.8	113
59	Head and Neck Squamous Cell Carcinoma in Patients With Fanconi Anemia. JAMA Otolaryngology, 2005, 131, 640.	1.2	7
60	Effects of pharmacologic antagonists of epidermal growth factor receptor, PI3K and MEK signal kinases on NFâ€₽B and APâ€₽ activation and ILâ€8 and VEGF expression in human head and neck squamous cell carcinoma lines. International Journal of Cancer, 2002, 99, 538-548.	5.1	217
61	Expression of proangiogenic chemokine Gro 1 in low and high metastatic variants of Pam murine squamous cell carcinoma is differentially regulated by IL-1?, EGF and TGF-?1 through NF-?B dependent and independent mechanisms. International Journal of Cancer, 2001, 94, 637-644.	5.1	46
62	Cyclooxygenase regulates human oropharyngeal carcinomas via the proinflammatory cytokine IL-6: a general role for inflammation?. FASEB Journal, 2000, 14, 1499-1507.	0.5	55
63	IL-12- and IL-2-induced tumor regression in a new murine model of oral squamous-cell carcinoma is promoted by expression of the CD80 co-stimulatory molecule and interferon-?., 2000, 86, 368-374.		37
64	Cisplatin and radiation sensitivity in human head and neck squamous carcinomas are independently modulated by glutathione and transcription factor NF-?B. Head and Neck, 2000, 22, 748-759.	2.0	81
65	Growth Regulated Oncogene- $\hat{l}\pm$ expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC Receptor-2 dependent mechanism. Oncogene, 2000, 19, 3477-3486.	5.9	157
66	Cyclooxygenase regulates human oropharyngeal carcinomas via the proinflammatory cytokine ILâ€6: a general role for inflammation?. FASEB Journal, 2000, 14, 1499-1507.	0.5	70
67	Constitutive activation of transcription factors NF-?B, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. , 1999, 26, 119-129.		197
68	Decreased expression of CD80 is a marker for increased tumorigenicity in a new murine model of oral squamous-cell carcinoma., 1999, 82, 377-384.		36
69	Decreased expression of CD80 is a marker for increased tumorigenicity in a new murine model of oral squamous-cell carcinoma., 1999, 82, 377.		1
70	Decreased expression of CD80 is a marker for increased tumorigenicity in a new murine model of oral squamousâ€cell carcinoma. International Journal of Cancer, 1999, 82, 377-384.	5.1	2
71	The host environment promotes the development of primary and metastatic squamous cell carcinomas that constitutively express proinflammatory cytokines IL-1a, IL-6, GM-CSF, and KC. Clinical and Experimental Metastasis, 1998, 16, 655-664.	3.3	60
72	Intravenous delivery of 5′-iododeoxyuridine during hyperfractionated radiotherapy for locally advanced head and neck cancers: Results of a pilot study. Laryngoscope, 1998, 108, 1090-1094.	2.0	9

#	Article	IF	CITATIONS
73	Metastatic variants derived following in vivo tumor progression of an in vitro transformed squamous cell carcinoma line acquire a differential growth advantage requiring tumor-host interaction. Clinical and Experimental Metastasis, 1997, 15, 527-537.	3.3	41
74	Genes differentially expressed with malignant transformation and metastatic tumor progression of murine squamous cell carcinoma. Journal of Cellular Biochemistry, 1997, 67, 90-100.	2.6	42
75	Cell adhesion and regulatory molecules involved in tumor formation, hemostasis, and wound healing. Head and Neck, 1995, 17, 140-147.	2.0	42
76	Squamous-cell carcinoma., 0,, 686-692.		0