Harith Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988503/publications.pdf

Version: 2024-02-01

1,072 papers

13,676 citations

50 h-index 106344 65 g-index

1081 all docs

1081 docs citations

1081 times ranked

5823 citing authors

#	Article	IF	CITATIONS
1	Hybrid Chalcogenideâ€Germanosilicate Waveguides for High Performance Stimulated Brillouin Scattering Applications. Advanced Functional Materials, 2022, 32, 2105230.	14.9	10
2	Generation of four-wave mixing with nonlinear Vanadium-carbide (V2C)-deposited side-polished fiber (SPF) in 1.5- and 2.0-µm wavelength operation. Optics and Laser Technology, 2022, 145, 107458.	4.6	11
3	L-band femtosecond fiber laser with Cu ₂ Te-PVA thin film. Laser Physics Letters, 2022, 19, 015101.	1.4	O
4	Thulium-doped fluoride mode-locked fiber laser based on nonlinear polarization rotation. Optical and Quantum Electronics, 2022, 54, 1 .	3.3	3
5	Performance of Q-Switched Fiber Laser Using Optically Deposited Reduced Graphene Oxide as Saturable Absorber. Fiber and Integrated Optics, 2022, 41, 26-40.	2.5	4
6	Liquid phase exfoliation of hafnium diselenide and its role in initiating the mode-locked pulse laser at eye-safe wavelength region. Optical Materials, 2022, 123, 111933.	3.6	6
7	Arc-shaped fiber coated with Ta2AlC MAX phase as mode-locker for pulse laser generation in thulium/holmium doped fiber laser. Optik, 2022, 252, 168508.	2.9	9
8	Ti3C2 MXene as an optical modulator in a Thulium/Holmium-doped fiber laser. Optics and Laser Technology, 2022, 149, 107802.	4.6	7
9	Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain. Optics Communications, 2022, 508, 127717.	2.1	8
10	Ti2C MXene for multi-wavelength enhancement in S-band Q-switched thulium doped fluoride fiber laser. Optical Fiber Technology, 2022, 68, 102790.	2.7	2
11	Strain Sensor Based on Embedded Fiber Bragg Grating in Thermoplastic Polyurethane Using the 3D Printing Technology for Improved Sensitivity. Photonic Sensors, 2022, 12, 1.	5.0	13
12	Generation of Mode-Locked Thulium-Doped Fiber Laser in 2.0-νm Wavelength Operation by Polymer-Coated Iron Phosphorus Trisulfide (FePS ₃)-Based Saturable Absorber. IEEE Journal of Quantum Electronics, 2022, 58, 1-8.	1.9	4
13	Polarization response of planarized optical waveguides to determine the anisotropic complex refractive index of graphene oxide thin films. Applied Optics, 2022, 61, 744.	1.8	3
14	Generation of mode-locked pulses based on D-shaped fiber with CdTe as a saturable absorber in the C-band region. RSC Advances, 2022, 12, 8637-8646.	3.6	0
15	A High-Precision Extensometer System for Ground Displacement Measurement Using Fiber Bragg Grating. IEEE Sensors Journal, 2022, 22, 8509-8521.	4.7	10
16	Temperature-independent vibration sensor based on Fabry–Perot interferometer using a fiber Bragg grating approach. Optical Engineering, 2022, 61, .	1.0	2
17	Passively Q-switched $1.3\hat{A}^{1/\!\!4}$ m bismuth doped-fiber laser based on transition metal dichalcogenides saturable absorbers. Optical Fiber Technology, 2022, 69, 102851.	2.7	10
18	Review: Dark pulse generation in fiber laser system. Optics and Laser Technology, 2022, 151, 108056.	4.6	6

#	Article	IF	Citations
19	Optical Fiber Sensor With Double Tubes for Accurate Strain and Temperature Measurement Under High Temperature up to 1000 °C. IEEE Sensors Journal, 2022, 22, 11710-11716.	4.7	12
20	Deposition of Ti2AlC MAX phase onto the side polished fiber as saturable absorber for soliton mode-locked fiber laser generation. Optical and Quantum Electronics, 2022, 54, .	3.3	2
21	Thermal release tape assisted mechanical exfoliation of pristine TMD and the performance of the exfoliated TMD saturable absorbers for Q-switched laser generation. Optical Materials, 2022, 128, 112363.	3.6	6
22	Development of polarization modulator using MXene thin film. Scientific Reports, 2022, 12, 6766.	3.3	4
23	Enhancement of four-wave mixing and supercontinuum generations aided with dual arc-shaped fiber with 2D material. IEEE Journal of Quantum Electronics, 2022, , 1-1.	1.9	0
24	Layered gallium telluride for inducing mode-locked pulse laser in thulium/holmium-doped fiber. Journal of Luminescence, 2022, 248, 119002.	3.1	3
25	Graphene filament-chitin bio-composite polymer based passive Q-switcher in EDFL with tunable wavelength. AIP Conference Proceedings, 2022, , .	0.4	0
26	L-cysteine grafted fiber-optic chemosensor for heavy metal detection. Optical Fiber Technology, 2022, 71, 102938.	2.7	5
27	Methodology for Fabrication-Tolerant Planar Directional Couplers. IEEE Photonics Journal, 2022, 14, 1-9.	2.0	1
28	Generation of mode-locked thulium/holmium-doped fiber laser assisted by bismuthene/side polished fiber as saturable absorber. Laser Physics Letters, 2022, 19, 075103.	1.4	3
29	Solution-processed antimonene integrated arc-shaped fiber for mode-locked pulse laser generation at 1.9Âμm spectral region. Optical Materials, 2022, 131, 112635.	3.6	1
30	Passively mode-locked laser using HfSe2 as saturable absorber at 1.5Âνm and 2.0Âμm. Optics and Laser Technology, 2022, 155, 108397.	4.6	3
31	S-band Mode-locked Thulium-doped fluoride fiber laser using FePS3 as saturable absorber. Optical Fiber Technology, 2022, 72, 102985.	2.7	8
32	Q-switched tunable fiber laser with aluminum oxide saturable absorber and Sagnac loop mirror. Indian Journal of Physics, 2021, 95, 1887-1893.	1.8	2
33	Tunable Q-switched ytterbium-doped fibre laser with Nickel Oxide saturable absorber. Indian Journal of Physics, 2021, 95, 361-366.	1.8	1
34	All fiber temperature sensor based on light polarization measurement utilizing graphene coated tapered fiber. Microwave and Optical Technology Letters, 2021, 63, 1314-1318.	1.4	2
35	Double-side polished fiber for generation of mode-locked fiber lasers. Optics Communications, 2021, 479, 126476.	2.1	4
36	Vibration Mode Analysis for a Suspension Bridge by Using Low-Frequency Cantilever-Based FBG Accelerometer Array. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	22

#	Article	IF	Citations
37	Tunable Dual-Wavelength Bismuth Fiber Laser With 37.8-GHz Frequency Spacing. Journal of Lightwave Technology, 2021, 39, 6617-6623.	4.6	1
38	Multivariate Regression Between Hounsfield Unit Shift, Tissue Temperature, and Tissue Contraction: A Feasibility Study of Computed Tomography Thermometry. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	4.7	2
39	Laser-heated needle for biopsy tract ablation: In vivo study of rabbit liver biopsy. Physica Medica, 2021, 82, 40-45.	0.7	4
40	Label-free surface-plasmon resonance fiber grating biosensor for Hand-foot-mouth disease (EV-A71) detection. Optik, 2021, 228, 166221.	2.9	14
41	Cu2Te-PVA as saturable absorber for generating Q-switched erbium-doped fiber laser. Optical and Quantum Electronics, 2021, 53, 1.	3.3	7
42	3D-Printed Tilt Sensor Based on an Embedded Two-Mode Fiber Interferometer. IEEE Sensors Journal, 2021, 21, 7565-7571.	4.7	9
43	Generation of four-wave mixing in molybdenum ditelluride (MoTe ₂)-deposited side-polished fibre. Journal of Modern Optics, 2021, 68, 425-432.	1.3	7
44	$1.3 \hat{A}\hat{A}$ µm dissipative soliton resonance generation in Bismuth doped fiber laser. Scientific Reports, 2021, 11, 6356.	3.3	10
45	Fabrication of a carbon nanotube/tungsten disulfide visible spectrum photodetector. Applied Optics, 2021, 60, 2839.	1.8	1
46	1.9 \hat{l} 4m mode-locked fiber laser based on evanescent field interaction with metallic vanadium diselenide (VSe2). Optik, 2021, 230, 166280.	2.9	8
47	Passively mode-locked thulium-holmium co-doped fiber laser using hybrid side polished fiber with MoWS2-rGO nanocomposite. Optical Fiber Technology, 2021, 62, 102468.	2.7	7
48	Niobium carbide (Nb ₂ C) MXene as a saturable absorber to assist in the generation of a wavelength tunable passively Q-switched fiber laser. Laser Physics Letters, 2021, 18, 065101.	1.4	8
49	Performance of Nb2C MXene coated on tapered fiber as saturable absorber for the generation of Mode-Locked Erbium-Doped fiber laser. Infrared Physics and Technology, 2021, 114, 103647.	2.9	19
50	Allâ€fibre phase shifter based on tapered fibre coated with MoWS ₂ â€fGO. IET Optoelectronics, 2021, 15, 264-269.	3.3	7
51	$1.3 \hat{A} \hat{l} \frac{1}{4}$ m passively Q-Switched bismuth doped fiber laser using Nb2C saturable absorber. Optical Materials, 2021, 116, 111087.	3.6	7
52	Passively mode locked thulium and thulium/holmium doped fiber lasers using MXene Nb2C coated microfiber. Scientific Reports, 2021, 11, 11652.	3.3	26
53	altimg="si7.svg"> <mml:mrow><mml:mn>08</mml:mn><mml:mspace class="nbsp" width="1em"></mml:mspace><mml:mi mathvariant="normal">ν</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow> Q-switched holmium fiber laser using niobium carbide-polyvinyl alcohol (Nb2C-PVA) as a saturable absorber. Optics Communications. 2021.	2.1	11
54	490, 126888. 1.5 and 2.0 Âμm all-optical modulators based on niobium-carbide (Nb2C)-PVA film. Laser Physics Letters, 2021, 18, 085103.	1.4	1

#	Article	IF	CITATIONS
55	Lithium-Ion Battery State of Charge (SoC) Estimation with Non-Electrical parameter using Uniform Fiber Bragg Grating (FBG). Journal of Energy Storage, 2021, 40, 102704.	8.1	36
56	Biaxial 3D-Printed Inclinometer Based on Fiber Bragg Grating Technology. IEEE Sensors Journal, 2021, 21, 18815-18822.	4.7	8
57	Mode-locked thulium/holmium-doped fiber laser with vanadium carbide deposited on tapered fiber. Optical Fiber Technology, 2021, 65, 102589.	2.7	8
58	Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550Ânm window. Optical Materials, 2021, 120, 111450.	3.6	8
59	MoTe2-PVA as saturable absorber for passively Q-switched thulium-doped fluoride and erbium-doped fiber laser. Optik, 2021, 243, 167157.	2.9	8
60	Graphene-chitin bio-composite polymer based mode locker at 2 micron region. Optik, 2021, 245, 167710.	2.9	4
61	Mode-locked thulium/holmium co-doped fiber laser using WTe2-covered tapered fiber. Optik, 2021, 245, 167723.	2.9	6
62	Thulium-holmium doped fiber laser mode-locking with hafnium disulfide (HfS2) coated on D-shaped fiber. Optik, 2021, 246, 167785.	2.9	1
63	The performance of Ti2C MXene and Ti2AlC MAX Phase as saturable absorbers for passively mode-locked fiber laser. Optical Fiber Technology, 2021, 67, 102683.	2.7	22
64	Multi-wavelength Bismuth-doped fiber laser in 1.3ÂÂμm based on a compact two-mode fiber filter. Optics and Laser Technology, 2021, 144, 107390.	4.6	6
65	The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation. Optical Materials, 2021, 122, 111699.	3.6	3
66	An investigation on temperature sensitivity of conductive carbon coated fiber Bragg grating. Results in Optics, 2021, 5, 100164.	2.0	2
67	$2\hat{A}^{1/4}$ m passively mode-locked thulium-doped fiber lasers with Ta2AlC-deposited tapered and side-polished fibers. Scientific Reports, 2021, 11, 21278.	3.3	12
68	Double F-P Interference Optical Fiber High Temperature Gas Pressure Sensor Based on Suspended Core Fiber. IEEE Sensors Journal, 2021, 21, 26805-26813.	4.7	16
69	Signal demodulation for Surface Plasmon Resonance Tilted fiber Bragg Grating based on Root Sum Squared Method. IEEE Transactions on Instrumentation and Measurement, 2021, , 1-1.	4.7	2
70	Tunable Spacing Dual-Wavelength Q-Switched Fiber Laser Based on Tunable FBG Device. Photonics, 2021, 8, 524.	2.0	7
71	Regenerated Chirped Grating-Michelson Interferometer as a Laser Beam Intensity Profiler for CO2 Laser. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 559-564.	4.7	2
72	All-Optical Humidity Sensor Using SnO2 Nanoparticle Drop Coated on Straight Channel Optical Waveguide. Photonic Sensors, 2020, 10, 123-133.	5.0	8

#	Article	IF	Citations
73	Configurable triple wavelength semiconductor optical amplifier fiber laser using multiple broadband mirrors. Microwave and Optical Technology Letters, 2020, 62, 46-52.	1.4	4
74	All fiber multiwavelength Tm-doped double-clad fiber laser assisted by four-wave mixing in highly nonlinear fiber and Sagnac loop mirror. Optics Communications, 2020, 456, 124589.	2.1	14
7 5	Fiber Bragg Grating-Based Fabry-Perot Interferometer Sensor for Damage Detection on Thin Aluminum Plate. IEEE Sensors Journal, 2020, 20, 3564-3571.	4.7	10
76	Enhanced triple-pass hybrid erbium doped fiber amplifier using distribution pumping scheme in a dual-stage configuration. Optik, 2020, 204, 164191.	2.9	15
77	Generation of mode-locked noise-like pulses in double-clad Tm-doped fibre laser with nonlinear optical loop mirror. Journal of Modern Optics, 2020, 67, 146-152.	1.3	19
78	S/S+-band tunable dual-wavelength thulium doped fluoride fiber laser. Infrared Physics and Technology, 2020, 105, 103168.	2.9	1
79	Q-switched Thulium-doped fiber laser at 1860†nm and 1930†nm using a Holmium-doped fiber as an amplified spontaneous emission filter. Optics and Laser Technology, 2020, 123, 105908.	4.6	3
80	Q-Switched Fiber Laser at \$1.5~mu\$ m Region Using Ti ₃ AlC ₂ MAX Phase-Based Saturable Absorber. IEEE Journal of Quantum Electronics, 2020, 56, 1-6.	1.9	17
81	All Fiber Temperature Sensor Based on TMD Alloy Coated Tapered Fiber. , 2020, , .		0
82	Growth of magnetic binary metal oxides on reduced graphene oxide sheets and its application as saturable absorber in mode-locked Tm/Ho Co-doped fiber laser. Optical Materials, 2020, 109, 110293.	3.6	4
83	Soliton passively mode-locked pulses generation in thulium-holmium doped fiber laser (THDFL) with molybdenum oxide saturable absorber. Optical Fiber Technology, 2020, 60, 102344.	2.7	7
84	Frequency switching multiwavelength Brillouin Raman fibre laser based on feedback power adjustment technique. Journal of Modern Optics, 2020, 67, 951-957.	1.3	6
85	Reduced Graphene Oxide-Silver Nanoparticles for Optical Pulse Generation in Ytterbium- and Erbium-Doped Fiber Lasers. Scientific Reports, 2020, 10, 9408.	3.3	21
86	Application of two-dimensional materials in fiber laser systems. , 2020, , 227-264.		3
87	Ultrasonic-assisted synthesis of Ti3AlC2-TiO2 composite and its application as a saturable absorber for generating the mode-locked pulses in thulium-holmium doped fiber laser. Results in Optics, 2020, 1, 100018.	2.0	6
88	Passively Q-switched thulium fluoride fiber laser operating in S-band region using N-doped graphene saturable absorber. Indian Journal of Physics, 2020, 95, 1837. All-fiberized, mode-locked laser at 5 mm/math xmlns/mml="http://www.w3.org/1998/Math/Math/M."	1.8	2
89	display="inline" id="d1e95" altimg="si1.svg"> <mml:mrow><mml:mn>1</mml:mn><mml:mo>.</mml:mo><mml:mn>95</mml:mn><mml:mspawidth="1em" class="nbsp"></mml:mspawidth="1em"><mml:mi></mml:mi><!--</td--><td>ice 2.1</td><td>6</td></mml:mrow>	ice 2.1	6
90	evanescent field interaction. Optics Communications, 2020, 476, 126329. GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser. IEEE Journal of Quantum Electronics, 2020, 56, 1-8.	1.9	13

#	Article	IF	Citations
91	Multi- and dual-wavelength Thulium-doped fluoride fiber laser assisted by four-wave mixing in S-band region. Infrared Physics and Technology, 2020, 111, 103485.	2.9	4
92	68 MHz Fundamental Repetition Rates for Mode-Locked Erbium Doped Fiber Laser based Carbon Nanotube Saturable Absorber. Journal of Physics: Conference Series, 2020, 1529, 042003.	0.4	2
93	Nanotube Mode-Locker with Tuneable Wavelength. , 2020, , .		0
94	High photoresponsivity and external quantum efficiency of ultraviolet photodetection by mechanically exfoliated planar multi-layered graphene oxide sheet prepared using modified Hummer's method and spin coating technique. Materials Express, 2020, 10, 998-1009.	0.5	3
95	Multiwavelength Brillouin Generation in Bismuth-Doped Fiber Laser With Single- and Double-Frequency Spacing. Journal of Lightwave Technology, 2020, 38, 6886-6896.	4.6	21
96	Tunable passively Q-switched thulium doped fluoride fibre (TDFF) laser using reduced graphene oxide-silver (rGO-Ag) as saturable absorber. Journal of Modern Optics, 2020, 67, 1022-1030.	1.3	5
97	Configurable TE- and TM-Pass Graphene Oxide-Coated Waveguide Polarizer. IEEE Photonics Technology Letters, 2020, 32, 627-630.	2.5	14
98	Large polarization response of planarized optical waveguide functionalized with 2D material overlays. Journal of Modern Optics, 2020, 67, 730-736.	1.3	2
99	Electron beam deposited silver (Ag) saturable absorber as passive Q-switcher in 1.5- and 2-micron fiber lasers. Optik, 2020, 207, 164455.	2.9	8
100	Temporal and amplitude modulation at C-band region using Bi2Te3-based optical modulator. Journal of Modern Optics, 2020, 67, 638-646.	1.3	4
101	Graphene Oxide Functionalized Optical Planar Waveguide for Water Content Measurement in Alcohol. Photonic Sensors, 2020, 10, 215-222.	5.0	1
102	Stable multiwavelength semiconductor optical amplifierâ€based fiber laser using a 2â€mode interferometer. Microwave and Optical Technology Letters, 2020, 62, 3363-3368.	1.4	4
103	All fiber normal dispersion mode locked ytterbium doped double-clad fiber laser using fiber taper with WS2-ZnO saturable absorber. Optics and Laser Technology, 2020, 130, 106350.	4.6	8
104	Tunable S+/S band Q-switched thulium-doped fluoride fiber laser using tungsten ditelluride (WTe2). Results in Physics, 2020, 17, 103124.	4.1	6
105	56 nm Wide-Band Tunable Q-Switched Erbium Doped Fiber Laser with Tungsten Ditelluride (WTe2) Saturable Absorber. Scientific Reports, 2020, 10, 9860.	3.3	16
106	A Temperature-Controlled Laser Hot Needle With Grating Sensor for Liver Tissue Tract Ablation. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 7119-7124.	4.7	15
107	Narrow bandwidth optimization using a polymer microring resonator in a thulium–holmium fiber laser cavity. Optics Communications, 2020, 466, 125574.	2.1	1
108	Temperature and strain response of in-fiber air-cavity Fabry-Perot interferometer under extreme temperature condition. Optik, 2020, 220, 165034.	2.9	7

#	Article	IF	CITATIONS
109	Generation of Q-switched Pulses in Thulium-doped and Thulium/Holmium-co-doped Fiber Lasers using MAX phase (Ti3AlC2). Scientific Reports, 2020, 10, 9233.	3.3	34
110	Tunable passively Q-switched erbium-doped fiber laser based on Ti3C2Tx MXene as saturable absorber. Optical Fiber Technology, 2020, 58, 102287.	2.7	21
111	Thermal characterization of phase difference among the LP modes in two-mode fibers based on numerical approach. Optik, 2020, 207, 164289.	2.9	1
112	Nanolitre solution drop-casting for selective area graphene oxide coating on planar surfaces. Materials Chemistry and Physics, 2020, 249, 122970.	4.0	19
113	Q-switched fiber laser based on CdS quantum dots as a saturable absorber. Results in Physics, 2020, 16, 103123.	4.1	24
114	ZnO nanorod-coated tapered plastic fiber sensors for relative humidity. Optics Communications, 2020, 473, 125924.	2.1	12
115	Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry. Optik, 2020, 219, 164970.	2.9	11
116	Gainâ€flattened hybrid EDFA operating in C + L band with parallel pumping distribution technique. IET Optoelectronics, 2020, 14, 447-451.	3.3	12
117	155 nm-wideband and tunable q-switched fiber laser using an MXene Ti ₃ C ₂ T _X coated microfiber based saturable absorber. Laser Physics Letters, 2020, 17, 085103.	1.4	21
118	Passively Q-switched S+/S band fiber laser with copper telluride saturable absorber. Laser Physics Letters, 2020, 17, 095102.	1.4	8
119	Q-"switched tunable ytterbium-doped fiber laser with molybdenum ditelluride-based saturable absorber. Optical Engineering, 2020, 59, 1.	1.0	2
120	Wide multiwavelength Brillouin–Raman fiber laser assisted by an arc-shaped fiber attenuator. Applied Optics, 2020, 59, 1876.	1.8	8
121	Cascaded Fabry-Perot interferometer-regenerated fiber Bragg grating structure for temperature-strain measurement under extreme temperature conditions. Optics Express, 2020, 28, 30478.	3.4	20
122	Surface ablation of poly allyl diglycol carbonate polymer using high-repetition-rate femtosecond laser. Optical Engineering, 2020, 59, 1 .	1.0	0
123	Light modulation properties of GO-coated optical waveguide. Laser Physics, 2020, 30, 095102.	1.2	1
124	A Compact Linear-Cavity Multi-wavelength Praseodymium Fiber Laser by Stimulated Brillouin Scattering. , 2020, , .		0
125	MoSSe-based passively modulated erbium doped fiber laser. Laser Physics, 2020, 30, 095104.	1.2	O
126	1.8†Âμm passively Q-switched thulium-doped fiber laser. Optics and Laser Technology, 2019, 120, 105757.	4.6	6

#	Article	IF	Citations
127	Silicon racetrack resonator based on nonlinear material. European Physical Journal D, 2019, 73, 1.	1.3	3
128	Wide-band multiwavelength Brillouin–Raman fiber laser based on feedback optimization. Optics Communications, 2019, 453, 124402.	2.1	7
129	Nickel phosphate as a C-band optical pulse modulator. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	5
130	Tungsten disulfide-chitosan film as optical pulse and amplitude modulator in C-band region. Laser Physics, 2019, 29, 105102.	1,2	7
131	Broadband high responsivity large-area plasmonic-enhanced multilayer MoS ₂ on p-type silicon photodetector using Au nanostructures. Materials Research Express, 2019, 6, 105090.	1.6	4
132	Investigation of structural and optoelectronic properties of n-MoS2/p-Si sandwiched heterojunction photodetector. Optik, 2019, 198, 163237.	2.9	10
133	Discriminative measurement for temperature and humidity using hollow-core Fabry-Perot interferometer. Optical Fiber Technology, 2019, 53, 102027.	2.7	8
134	405 nm ultraviolet photodetector based on tungsten disulphide thin film grown by drop casting method. Journal of Modern Optics, 2019, 66, 1836-1840.	1.3	7
135	Generation of sub-nanosecond pulse in dual-wavelength praseodymium fluoride fibre laser. Laser Physics, 2019, 29, 105101.	1.2	2
136	High performance graphene-like thinly layered graphite based visible light photodetector. Optical and Quantum Electronics, 2019, 51, 1.	3.3	0
137	Near-Infrared Soliton Mode-Locked Thulium Doped Fibre Laser Using WS ₂ -ZnO Composite Material as Saturable Absorber. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	6
138	FBG Water-Level Transducer Based on PVC-Cantilever and Rubber-Diaphragm Structure. IEEE Sensors Journal, 2019, 19, 7407-7414.	4.7	8
139	Improvement of 2-1 ¹ /4m Thulium-Doped Fiber Lasers via ASE Suppression Using All-Solid Low-Pass Photonic Bandgap Fibers. Journal of Lightwave Technology, 2019, 37, 5686-5691.	4.6	4
140	Wide-band flat-gain optical amplifier using Hafnia and zirconia erbium co-doped fibres in double-pass parallel configuration. Journal of Modern Optics, 2019, 66, 1711-1716.	1.3	6
141	In-fiber Fabry Perot interferometer with narrow interference fringes for enhanced sensitivity in elastic wave detection. Optical Fiber Technology, 2019, 53, 102021.	2.7	8
142	Q-switched erbium-doped fiber laser using silver nanoparticles deposited onto side-polished D-shaped fiber by electron beam deposition method. Optical Fiber Technology, 2019, 53, 101997.	2.7	8
143	An efficient <i>L</i> -band Zirconia Yttria Aluminum Erbium co-doped fiber amplifier with 1480nm pumping. Journal of Nonlinear Optical Physics and Materials, 2019, 28, 1950018.	1.8	3
144	All-fiber optical polarization modulation system using MoS2 as modulator. Infrared Physics and Technology, 2019, 102, 103002.	2.9	14

#	Article	IF	Citations
145	Application of MoWS2-rGO/PVA thin film as all-fiber pulse and amplitude modulators in the O-band region. Optical Fiber Technology, 2019, 48, 1-6.	2.7	11
146	An efficient wideband hafnia-bismuth erbium co-doped fiber amplifier with flat-gain over 80â€nm wavelength span. Optical Fiber Technology, 2019, 48, 186-193.	2.7	18
147	Dispersion-engineered silicon nitride waveguides for mid-infrared supercontinuum generation covering the wavelength range 0.8–6.5 <i>ι⁄4 < /i>m. Laser Physics, 2019, 29, 025301.</i>	1.2	15
148	Wideband optical fiber amplifier with short length of enhanced erbium–zirconia–yttria–aluminum co-doped fiber. Optik, 2019, 182, 194-200.	2.9	10
149	The surgical ablation on soft tissues using Ho:YAG laser with deviated beam fiber. Optical Fiber Technology, 2019, 52, 101937.	2.7	1
150	Molybdenum tungsten disulphide (MoWS ₂) as a saturable absorber for a passively Q-switched thulium/holmium-codoped fibre laser. Journal of Modern Optics, 2019, 66, 1163-1171.	1.3	14
151	Surface plasmonic effect of nanoparticle-like silver nanostructure on the high responsivity of visible/infrared silver-based heterojunction photodetector. Journal of Modern Optics, 2019, 66, 1329-1338.	1.3	1
152	Flat-gain and wide-band partial double-pass erbium co-doped fiber amplifier with hybrid gain medium. Optical Fiber Technology, 2019, 52, 101952.	2.7	11
153	Nickel Oxide as a Q-switcher for Short Pulsed Thulium Doped Fiber Laser Generation. Journal of Physics: Conference Series, 2019, 1151, 012029.	0.4	1
154	A compact linear-cavity multi-wavelength Brillouin/thulium fiber laser in S/S+-band. Optical Fiber Technology, 2019, 51, 25-30.	2.7	4
155	Soliton mode-locking in thulium-doped fibre laser by evanescent field interaction with reduced graphene oxide-titanium dioxide saturable absorber. Laser Physics Letters, 2019, 16, 075102.	1.4	6
156	Review: application of transition metal dichalcogenide in pulsed fiber laser system. Materials Research Express, 2019, 6, 082004.	1.6	35
157	Dual characteristics of molybdenum disulfide based PN heterojunction photodetector prepared via drop-cast technique. Optik, 2019, 188, 8-11.	2.9	2
158	Q-switched and mode-locked thulium doped fiber lasers with nickel oxide film saturable absorber. Optics Communications, 2019, 447, 6-12.	2.1	35
159	100ÂGHz free spectral range-tunable multi-wavelength fiber laser using single–multi–single mode fiber interferometer. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	10
160	Mode-locked pulse generation in erbium-doped fiber laser by evanescent field interaction with reduced graphene oxide-titanium dioxide nanohybrid. Optics and Laser Technology, 2019, 118, 93-101.	4.6	22
161	Influence of Internal Stresses in Few-Mode Fiber on the Thermal Characteristics of Regenerated Gratings. Photonic Sensors, 2019, 9, 162-169.	5.0	0
162	Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique. Results in Physics, 2019, 13, 102186.	4.1	14

#	Article	lF	Citations
163	Mode-locked near-infrared thulium doped fibre laser using evanescent field effect with Bi ₂ O ₃ saturable absorber. Laser Physics, 2019, 29, 055104.	1.2	3
164	Multimode interference based fiber-optic sensor for temperature measurement. Journal of Physics: Conference Series, 2019, 1151, 012023.	0.4	14
165	Fabrication and characterization of tungsten disulphide/silicon heterojunction photodetector for near infrared illumination. Optik, 2019, 185, 819-826.	2.9	10
166	C-band tunable performance of passively Q-switched erbium-doped fiber laser using Tin(IV) oxide as a saturable absorber. Optics Communications, 2019, 442, 1-7.	2.1	9
167	The effect of 980 nm and 1480 nm pumping on the performance of newly Hafnium Bismuth Erbium-doped fiber amplifier. Journal of Physics: Conference Series, 2019, 1151, 012013.	0.4	6
168	Polymer microfiber coated with ZnO for humidity sensing. Journal of Physics: Conference Series, 2019, 1151, 012019.	0.4	1
169	Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber. Optical Fiber Technology, 2019, 50, 177-182.	2.7	32
170	Depressed cladding erbium-doped fiber laser passively mode-locked with carbon nanotube saturable absorber. Laser Physics Letters, 2019, 16, 045102.	1.4	2
171	Digital Matched Filtering (DMF) Technique for the Performance Enhancement of Few-Mode Fiber Bragg Grating Sensor. IEEE Sensors Journal, 2019, 19, 5653-5659.	4.7	1
172	Selfâ€generating Brillouin fiber laser using highly nonlinear hafnium bismuth erbiumâ€doped fiber. Microwave and Optical Technology Letters, 2019, 61, 1651-1655.	1.4	6
173	Optoelectronic Characteristics of Tungsten Disulphide Based Visible Range Photodetector. , 2019, , .		2
174	Q-switched erbium-doped fiber laser with molybdenum disulfide (MoS ₂) nanoparticles on D-shaped fiber as saturable absorber. Journal of Nonlinear Optical Physics and Materials, 2019, 28, 1950026.	1.8	4
175	Low-cost SWIR Silicon-based Graphene Oxide Photodetector. , 2019, , .		0
176	Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber < sup > * < /sup > . Chinese Physics Letters, 2019, 36, 104202.	3.3	7
177	Highly sensitive micro-hygrometer based on microfiber knot resonator. Optics Communications, 2019, 431, 88-92.	2.1	14
178	Mode-locked thulium doped fiber laser with zinc oxide saturable absorber for 2â€Î¼m operation. Infrared Physics and Technology, 2019, 97, 142-148.	2.9	32
179	Passively Q-switched fiber laser tunable by Sagnac interferometer operation. Optik, 2019, 179, 1-7.	2.9	4
180	Dissipative soliton resonance in a passively mode-locked praseodymium fiber laser. Optics and Laser Technology, 2019, 112, 20-25.	4.6	20

#	Article	IF	CITATIONS
181	Investigation of the Brillouin effect in highly nonlinear hafnium bismuth erbium doped fiber. Microwave and Optical Technology Letters, 2019, 61, 173-177.	1.4	5
182	Polarizing effect of MoSe2-coated optical waveguides. Results in Physics, 2019, 12, 7-11.	4.1	10
183	Compact L-band switchable dual wavelength SOA based on linear cavity fiber laser. Optik, 2019, 182, 37-41.	2.9	7
184	Q-switched Ytterbium doped fibre laser using gold nanoparticles saturable absorber fabricated by electron beam deposition. Optik, 2019, 182, 241-248.	2.9	15
185	Ternary MoWSe <mml:math altimg="si14.gif" display="inline" id="d1e463" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:math> alloy saturable absorber for passively O-switched Yb-, Er- and Tm-doped fiber laser, Optics Communications, 2019, 437, 355-362.	2.1	26
186	Newly developed chromium-doped fiber as a saturable absorber at 1.55- and 2.0- $\hat{A}\mu m$ regions for Q-switching pulses generation. Optical Fiber Technology, 2019, 48, 144-150.	2.7	5
187	A Recent Progress of Steel Bar Corrosion Diagnostic Techniques in RC Structures. Sensors, 2019, 19, 34.	3.8	34
188	Pseudohigh-Resolution Spectral Interrogation Scheme for Small Signals From FBG Sensors. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2964-2970.	4.7	10
189	Widely Tunable Dual-Wavelength Thulium-doped fiber laser Operating in 1.8-2.0 mm Region. Optik, 2019, 179, 76-81.	2.9	7
190	Tunable Q-switched erbium-doped fiber laser in the C-band region using nanoparticles (TiO2). Optics Communications, 2019, 435, 283-288.	2.1	26
191	On comparison of the temperature sensitivity of SU-8-based triple-arm MZI against straight rib optical waveguides patterned on silicon wafer. Indian Journal of Physics, 2019, 93, 385-391.	1.8	0
192	Multiwavelength operation in praseodymium fiber laser using polarization maintaining fiber and nonlinear polarization rotation in ring cavity. Optical Engineering, 2019, $58, 1$.	1.0	5
193	Tungsten-disulphide-based heterojunction photodetector. Applied Optics, 2019, 58, 4014.	1.8	10
194	13  μm fiber grating in a thin-core fiber for LP ₀₁ –LP ₁₁ mode converters an sensing ability. Applied Optics, 2019, 58, 4358.	d _{1.8}	3
195	Nanosecond pulse laser generation at 155 and 2  μm regions by integrating a piece of newly developed chromium-doped fiber-based saturable absorber. Applied Optics, 2019, 58, 6528.	1.8	2
196	Regenerated grating produced in a multimaterial glass-based photosensitive fiber with an ultrahigh thermal regeneration ratio. Optics Express, 2019, 27, 4329.	3.4	4
197	Tunable passively Q-switched erbium-doped fiber laser with Chitosan/MoS2 saturable absorber. Optics and Laser Technology, 2018, 103, 199-205.	4.6	21
198	Tunable Q-switched thulium-doped fiber laser (TDFL) in 2.0†µm region based on gallium selenide saturable absorber. Optics and Laser Technology, 2018, 105, 10-14.	4.6	20

#	Article	IF	CITATIONS
199	Molybdenum disulfide saturable absorber for eye-safe mode-locked fiber laser generation. Journal of Nonlinear Optical Physics and Materials, 2018, 27, 1850010.	1.8	15
200	Infrared photodetectors based on reduced graphene oxide nanoparticles and graphene oxide. Laser Physics, 2018, 28, 066204.	1.2	12
201	Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 <i>Âμ</i> m. Laser Physics, 2018, 28, 055105.	1.2	17
202	Cancellation of birefringence in DBR laser through principal axis offset by a rotation of $90\hat{A}^{\circ}$. Indian Journal of Physics, 2018, 92, 1045-1048.	1.8	1
203	A novel waveguide design that produces an elongated laser beam output for soft tissue ablation. Optik, 2018, 164, 561-566.	2.9	2
204	Mixed Transition Metal Dichalcogenide as Saturable Absorber in Ytterbium, Praseodymium, and Erbium Fiber Laser. IEEE Journal of Quantum Electronics, 2018, 54, 1-9.	1.9	15
205	Planar hybrid carbon-decorated zinc oxide nanowires for infrared photodetection. Journal of Nanoparticle Research, 2018, 20, 1 .	1.9	1
206	Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	12
207	A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum. Laser Physics, 2018, 28, 016201.	1.2	4
208	Dual-Wavelength Thulium Fluoride Fiber Laser Based on SMF-TMSIF-SMF Interferometer as Potential Source for Microwave Generation in 100-GHz Region. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.9	12
209	Multiple supercontinuum generation based on a single modeâ€locked seed fiber laser. Microwave and Optical Technology Letters, 2018, 60, 845-849.	1.4	1
210	Visible Wireless Communications Using Solitonic Carriers Generated by Microring Resonators (MRRs). Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1595-1601.	1.5	7
211	Temperature sensor and fiber laser based on optical microfiber knot resonator. Optik, 2018, 154, 294-302.	2.9	8
212	Poly (N-vinyl Carbazole) – Polypyrrole/graphene oxide nanocomposite material on tapered fiber for Q-switched pulse generation. Optics and Laser Technology, 2018, 99, 184-190.	4.6	1
213	Multi-wavelength Praseodymium fiber laser using stimulated Brillouin scattering. Optics and Laser Technology, 2018, 99, 52-59.	4.6	17
214	Heterojunction photodetector based on graphene oxide sandwiched between ITO and p-Si. Journal of Modern Optics, 2018, 65, 353-360.	1.3	7
215	Enhancing Temperature Sensitivity Using Cyclic Polybutylene Terephthalate- (c-PBT-) Coated Fiber Bragg Grating. Journal of Sensors, 2018, 2018, 1-6.	1.1	6
216	Generation of an ultrafast femtosecond soliton fiber laser by carbon nanotube as saturable absorber. Journal of Physics: Conference Series, 2018, 1027, 012011.	0.4	0

#	Article	IF	CITATIONS
217	70‬nm, broadly tunable passively Q-switched thulium-doped fiber laser with few-layer Mo0.8W0.2S2 saturable absorber. Optical Fiber Technology, 2018, 46, 230-237.	2.7	7
218	Ultrafast mode-locked dual-wavelength thulium-doped fiber laser using a Mach-Zehnder interferometric filter. Opto-electronics Review, 2018, 26, 312-316.	2.4	3
219	Bismuth oxide nanoflakes for passive Q-switching in a C-band erbium doped fiber laser. Infrared Physics and Technology, 2018, 95, 19-26.	2.9	21
220	In ₂ Se ₃ saturable absorber for generating tunable Q-switched outputs from a bismuth–erbium doped fiber laser. Laser Physics Letters, 2018, 15, 115105.	1.4	12
221	Tin(IV) oxide nanoparticles as a saturable absorber for a Q-switched erbium-doped fiber laser. Laser Physics, 2018, 28, 125104.	1.2	10
222	Enhancement of broadband ultraviolet visible photodetection by boron nitride nanoparticles in bulk graphene oxide layer. Optical Materials, 2018, 86, 18-23.	3. 6	4
223	Generation of an ultrabroadband supercontinuum in the mid-infrared region using dispersion-engineered GeAsSe photonic crystal fiber. Optical and Quantum Electronics, 2018, 50, 1.	3.3	2
224	Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber. Chinese Physics Letters, 2018, 35, 104201.	3.3	10
225	Q-switched thulium/holmium fiber laser with gallium selenide. Optik, 2018, 175, 87-92.	2.9	5
226	S+/S band passively Q-switched thulium-fluoride fiber laser based on using gallium selenide saturable absorber. Optics and Laser Technology, 2018, 107, 116-121.	4.6	11
227	Mode Splitting Based on Polarization Manipulation in Few-Mode Fiber. IEEE Journal of Quantum Electronics, 2018, 54, 1-6.	1.9	5
228	Q-switched laser generation using MoWS <mml:math altimg="si2.gif" display="inline" id="mml2" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:math> -rGO in Erbium-doped fiber	2.1	11
229	laser cavity. Optics Communications, 2018, 426, 1-8. Compact and flat-gain fiber optical amplifier with Hafnia-Bismuth-Erbium co-doped fiber. Optik, 2018, 170, 56-60.	2.9	14
230	Generation of four-wave mixing with highly sharp idlers using 2 mm home-made side-polished fiber deposited by ZnO nanorod. Laser Physics, 2018, 28, 076205.	1.2	0
231	Wide-band, passively Q-switched Yb- and Tm-doped fibre laser using WSSe saturable absorber. Journal of Modern Optics, 2018, 65, 2044-2050.	1.3	5
232	Passively Q-switched erbium-doped fiber laser using coated reduced graphene oxide on arc-shaped single mode optical fiber as a saturable absorber. Laser Physics, 2018, 28, 085101.	1.2	5
233	Studies of Ag/TiO2 plasmonics structures integrated in side polished optical fiber used as humidity sensor. Results in Physics, 2018, 10, 308-316.	4.1	30
234	Mid-infrared supercontinuum generation using As2Se3 photonic crystal fiber and the impact of higher-order dispersion parameters on its supercontinuum bandwidth. Optical Fiber Technology, 2018, 45, 255-266.	2.7	17

#	Article	IF	Citations
235	High responsivity, self-powered carbon–zinc oxide hybrid thin film based photodetector. Applied Nanoscience (Switzerland), 2018, 8, 1755-1765.	3.1	7
236	Switchable 10, 20, and 30  GHz region photonics-based microwave generation using thulium-doped fluoride fiber laser. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1603.	2.1	11
237	Mach–Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid. Applied Optics, 2018, 57, 2050.	1.8	44
238	Hydrothermally synthesized zinc oxide nanoparticle based photodetector for blue spectrum detection. Optik, 2018, 172, 35-42.	2.9	9
239	Nickel oxide nanoparticles grafted with Chitosan as saturable absorber for tunable passively Q-switched fiber laser in S+/S band. Infrared Physics and Technology, 2018, 93, 96-102.	2.9	10
240	Spooling diameter dependent Q-switched output in depressed cladding erbium doped laser with MoWS2 saturable absorber. Optics and Laser Technology, 2018, 108, 170-176.	4.6	2
241	Soliton mode-locked thulium-doped fiber laser with cobalt oxide saturable absorber. Optical Fiber Technology, 2018, 45, 122-127.	2.7	23
242	Chitosan capped nickel oxide nanoparticles as a saturable absorber in a tunable passively Q-switched erbium doped fiber laser. RSC Advances, 2018, 8, 25592-25601.	3.6	26
243	Application of graphene oxide based Microfiber-Knot resonator for relative humidity sensing. Results in Physics, 2018, 9, 1572-1577.	4.1	32
244	Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers. Applied Optics, 2018, 57, 6971.	1.8	4
245	Design and modeling of dispersion-engineered all-chalcogenide triangular-core fiber for mid-infrared-region supercontinuum generation. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 266.	2.1	19
246	Supercontinuum Micrometer-Displacement Sensor Using Single-Multi-Air-Gap-Single Mode Fiber as Sensing Probe. IEEE Sensors Journal, 2018, 18, 8275-8279.	4.7	6
247	Mechanically exfoliated In ₂ Se ₃ as a saturable absorber for mode-locking a thulium-doped fluoride fiber laser operating in S-band. Applied Optics, 2018, 57, 6937.	1.8	22
248	Acrylate polymer coated side-polished fiber with graphene oxide nanoparticles for ultrafast fiber laser operation. Laser Physics, 2018, 28, 115101.	1.2	4
249	Passive mode-locking in erbium-doped fibre laser based on BN-GO saturable absorber. Journal of Modern Optics, 2018, 65, 2339-2349.	1.3	5
250	Enhanced Optical Delay Line in Few-Mode Fiber Based on Mode Conversion Using Few-Mode Fiber Bragg Gratings. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.9	3
251	Phase derivative thermo-spatiogram for distributed temperature sensing based on chirped grating-Michelson Interferometer. Sensors and Actuators A: Physical, 2018, 278, 43-47.	4.1	4
252	Single longitudinal mode laser generation using coupled microfiber Mach–Zehnder interferometer filter. Laser Physics, 2018, 28, 085102.	1.2	4

#	Article	IF	CITATIONS
253	Design of dispersion-engineered As2Se3 channel waveguide for mid-infrared region supercontinuum generation. Journal of Applied Physics, 2018, 123, .	2.5	21
254	Highly stable mode-locked fiber laser with graphene oxide-coated side-polished D-shaped fiber saturable absorber. Optical Engineering, 2018, 57, 1.	1.0	6
255	Gold Cone Metasurface MIC Sensor with Monolayer of Graphene and Multilayer of Graphite. Plasmonics, 2017, 12, 497-508.	3.4	13
256	Thermal decay analysis of fiber Bragg gratings at different temperature annealing rates using demarcation energy approximation. Optical Fiber Technology, 2017, 34, 16-19.	2.7	3
257	Study of a high output coupling ratio $<$ i> $<$ i> $<$ i> $<$ switched erbium-doped fibre laser using MoS $<$ sub $<$ 2 $<$ sub $<$ saturable absorber. Laser Physics, 2017, 27, 025104.	1.2	7
258	Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance. Journal of Modern Optics, 2017, 64, 1443-1449.	1.3	36
259	Dynamic LP01–LP11 Mode Conversion by a Tilted Binary Phase Plate. Journal of Lightwave Technology, 2017, 35, 3597-3603.	4.6	17
260	Mode-locking pulse generation in cladding pumped Erbium-Ytterbium co-doped fiber laser with graphene PVA film. Optik, 2017, 136, 531-535.	2.9	1
261	All-Normal-Dispersion Chalcogenide Waveguides for Ultraflat Supercontinuum Generation in the Mid-Infrared Region. IEEE Journal of Quantum Electronics, 2017, 53, 1-6.	1.9	13
262	Investigation on the Effects of the Formation of a Silver "Flower-Like Structure―on Graphene. Nanoscale Research Letters, 2017, 12, 50.	5.7	3
263	Transition Metal Dichalcogenides (WS ₂ and MoS ₂) Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers. Chinese Physics Letters, 2017, 34, 014202.	3.3	24
264	Tunable and switchable Brillouin multi-wavelengthÂthulium fluoride fiber laser in S/S+ band region. Optics Communications, 2017, 397, 91-94.	2.1	4
265	Multiwavelength Brillouin fibre laser in two-mode fiber. Journal of Modern Optics, 2017, 64, 1744-1750.	1.3	3
266	Tunable $2.0 < i > \hat{A}\mu < /i > m$ Q-switched fiber laser using a silver nanoparticle based saturable absorber. Laser Physics, 2017, 27, 065110.	1.2	16
267	2µm mode-locked thulium-doped fiber laser using Mach–Zehnder interferometer tuning capability. Laser Physics, 2017, 27, 065104.	1.2	16
268	Characterization of arc-shaped side-polished fiber. Optical and Quantum Electronics, 2017, 49, 1.	3.3	12
269	Dual-wavelength Q-switched thulium-fluoride fiber laser for S+/S band using molybdenum disulfide (MoS2) as a saturable absorber. Laser Physics, 2017, 27, 065103.	1.2	2
270	PMMA microfiber loop resonator for humidity sensor. Sensors and Actuators A: Physical, 2017, 260, 112-116.	4.1	27

#	Article	IF	CITATIONS
271	Picomole Dopamine Detection Using Optical Chips. Plasmonics, 2017, 12, 1505-1510.	3.4	14
272	Dual-wavelength ytterbium-doped fiber laser using microfiber and D-shaped polished fiber. Optik, 2017, 130, 1421-1425.	2.9	3
273	Performance enhancement of multi-wavelength generations based on SOAs with a microfiber Mach–Zehnder interferometer. Laser Physics, 2017, 27, 075101.	1.2	4
274	Molybdenum disulfide side-polished fiber saturable absorber Q-switched fiber laser. Optics Communications, 2017, 400, 55-60.	2.1	17
275	Simulation of mode lock lasers using microring resonators integrated with InGaAsP saturable absorbers. Indian Journal of Physics, 2017, 91, 1411-1415.	1.8	4
276	LP11–LP01Mode Conversion Based on an Angled-Facet Two-Mode Fiber. IEEE Photonics Technology Letters, 2017, 29, 1007-1010.	2.5	4
277	Passive mode-locking at S-band by single-mode thulium-doped fluoride fiber using a thin film PtAg/N-G saturable absorber. Journal of Nanophotonics, 2017, 11, 026008.	1.0	6
278	Relative Humidity Sensing Using a PMMA Doped Agarose Gel Microfiber. Journal of Lightwave Technology, 2017, 35, 3940-3944.	4.6	48
279	Poly (N-vinylcarbazole)-polypyrrole/graphene oxide nanocomposites based microfiber interferometer for high stability temperature sensor. Sensors and Actuators A: Physical, 2017, 263, 44-53.	4.1	5
280	Stable dual-wavelength thulium-doped fluoride fiber laser at S-band region with WS2 as birefringence element. Optik, 2017, 142, 234-242.	2.9	3
281	Tunable $\langle i \rangle Q \langle i \rangle$ -switched erbium-doped fiber laser based on curved multimode fiber and graphene oxide saturable absorber. Laser Physics, 2017, 27, 055103.	1.2	6
282	CO ₂ Laser Applications in Optical Fiber Components Fabrication and Treatment: A Review. IEEE Sensors Journal, 2017, 17, 2961-2974.	4.7	12
283	Switchable multiwavelength ytterbium-doped fiber laser using a non-adiabatic microfiber interferometer. Laser Physics, 2017, 27, 055104.	1.2	18
284	Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer. Optical Fiber Technology, 2017, 36, 105-114.	2.7	44
285	Aluminized Film as Saturable Absorber for Generating Passive Q-Switched Pulses in the Two-Micron Region. Journal of Lightwave Technology, 2017, 35, 2470-2475.	4.6	17
286	Multiband dual polarized OFDM signal: Generation and distribution over fiber. Optik, 2017, 131, 899-905.	2.9	3
287	A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating. Measurement: Journal of the International Measurement Confederation, 2017, 99, 128-133.	5.0	47
288	All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber. Optics Communications, 2017, 389, 29-34.	2.1	47

#	Article	IF	Citations
289	LTE smart grid performance gains with additional remote antenna units via radio over fiber using a microring resonator system. Optical Switching and Networking, 2017, 25, 13-23.	2.0	6
290	PERFORMANCE ANALYSIS OF COPPER TIN SULFIDE, Cu ₂ SnS ₃ (CTS) WITH VARIOUS BUFFER LAYERS BY USING SCAPS IN SOLAR CELLS. Surface Review and Letters, 2017, 24, 1750073.	1.1	5
291	Fabrication and Characterization of Microbent Inline Microfiber Interferometer for Compact Temperature and Current Sensing Applications. Journal of Lightwave Technology, 2017, 35, 2150-2155.	4.6	15
292	Dual-wavelength, passively Q-switched thulium-doped fiber laser with N-doped graphene saturable absorber. Optik, 2017, 149, 391-397.	2.9	4
293	All-Normal Dispersion Chalcogenide PCF for Ultraflat Mid-Infrared Supercontinuum Generation. IEEE Photonics Technology Letters, 2017, 29, 1792-1795.	2.5	27
294	Passively Q-switched and mode-locked erbium doped fiber laser based on N-doped graphene saturable absorber. Laser Physics, 2017, 27, 105302.	1.2	5
295	The influence of aqueous sodium dodecyl sulphate solution in the photoresponsivity of nitrogen doped graphene oxide photodetector. Optical Materials, 2017, 73, 441-448.	3.6	11
296	A simple humidity sensor utilizing air-gap as sensing part of the Mach–Zehnder interferometer. Optical and Quantum Electronics, 2017, 49, 1.	3.3	4
297	Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses. Laser Physics Letters, 2017, 14, 085001.	1.4	20
298	1.5-micron fiber laser passively mode-locked by gold nanoparticles saturable absorber. Optics Communications, 2017, 403, 115-120.	2.1	21
299	Optical Microfiber Sensing of Adulterated Honey. IEEE Sensors Journal, 2017, 17, 5510-5514.	4.7	14
300	Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene. Journal of Optics (India), 2017, 46, 506-514.	1.7	4
301	Tunable Q-switched ytterbium-doped fibre laser by using zinc oxide as saturable absorber. Opto-electronics Review, 2017, 25, 10-14.	2.4	6
302	Fabrication and Characterization of 2 \tilde{A} — 2 Microfiber Coupler for Generating Two Output Stable Multiwavelength Fiber Lasers. Journal of Lightwave Technology, 2017, 35, 4227-4233.	4.6	21
303	Enhanced Photoresponsivity From Hybrid-ZnO Nanowires With White LED 400–700-nm Illumination. IEEE Journal of Quantum Electronics, 2017, 53, 1-6.	1.9	2
304	Analysis of semiconductor InGaAsP/InP coupled microring resonators (CMRR) by time-domain travelling wave (TDTW) method. Journal of Optics (India), 2017, 46, 311-319.	1.7	0
305	Bi ₂ Te ₃ based passively Q-switched at 1042.76 and 1047 nm wavelength. Laser Physics, 2017, 27, 125102.	1.2	9
306	Characterization of graphene oxide/silicon dioxide/p-type silicon heterojunction photodetector towards infrared 974Ânm illumination. Optical and Quantum Electronics, 2017, 49, 1.	3.3	6

#	Article	IF	CITATIONS
307	A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter. Optics and Laser Technology, 2017, 97, 12-19.	4.6	22
308	Relative humidity sensor employing tapered plastic optical fiber coated with seeded Al-doped ZnO. Optik, 2017, 144, 257-262.	2.9	19
309	Mode-locked Erbium-doped fiber laser generation using hybrid ZnO/GO saturable absorber. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012046.	0.6	2
310	S-band Q-switched thulium fluoride fiber laser using graphene saturable absorber. Laser Physics, 2017, 27, 075103.	1.2	3
311	Transmission performances of solitons in optical wired link. Applied Computing and Informatics, 2017, 13, 92-99.	5.9	8
312	S-band Q-switched fiber laser using MoSe 2 saturable absorber. Optics Communications, 2017, 382, 93-98.	2.1	51
313	A generation of 2Âμm Q-switched thulium-doped fibre laser based on anatase titanium(IV) oxide film saturable absorber. Journal of Modern Optics, 2017, 64, 187-190.	1.3	26
314	Tunable Q-switched thulium-doped Fiber Laser using multiwall carbon nanotube and Fabry-Perot Etalon filter. Optics Communications, 2017, 383, 359-365.	2.1	26
315	Tunable mode-locked laser with micro-air gap cavity. Optics and Laser Technology, 2017, 88, 222-225.	4.6	5
316	Titanium Dioxide (TiO 2) film as a new saturable absorber for generating mode-locked Thulium-Holmium doped all-fiber laser. Optics and Laser Technology, 2017, 89, 16-20.	4.6	72
317	Graphene oxide (GO)-based wideband optical polarizer using a non-adiabatic microfiber. Journal of Modern Optics, 2017, 64, 439-444.	1.3	2
318	Application of MoS ₂ thin film in multi-wavelength and Q-switched EDFL. Journal of Modern Optics, 2017, 64, 457-461.	1.3	8
319	Sub-nanometer tuning of mode-locked pulse by mechanical strain on tapered fiber. Optics Communications, 2017, 387, 84-88.	2.1	10
320	A combination of tapered fibre and polarization controller in generating highly stable and tunable dual-wavelength C-band laser. Journal of Modern Optics, 2017, 64, 709-715.	1.3	15
321	Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses. Optics and Laser Technology, 2017, 88, 166-171.	4.6	23
322	Passively Qâ€switched Oâ€band praseodymium doped fluoride fibre laser with PVA/graphene based SA. Electronics Letters, 2017, 53, 1481-1483.	1.0	5
323	Thermally induced reversible effect in FBG sensors and the impact of temperature ramping rate. , 2017, , .		0
324	TiO ₂ -Based Q-Switched Ytterbium-Doped Fiber Laser. IEEE Journal of Quantum Electronics, 2017, 53, 1-6.	1.9	3

#	Article	IF	CITATIONS
325	Graphene Oxide Doped SU-8 Waveguide and Its Application as Saturable Absorber. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	2
326	Potassium permanganate (KMnO_4) sensing based on microfiber sensors. Applied Optics, 2017, 56, 224.	2.1	13
327	Strain measurement at temperatures up to 800°C using regenerated gratings produced in the highGe-doped and B/Ge co-doped fibers. Applied Optics, 2017, 56, 6073.	1.8	14
328	Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber. Applied Optics, 2017, 56, 4675.	2.1	18
329	Curvature and Temperature Measurement Based on a Few-Mode PCF Formed M-Z-I and an Embedded FBG. Sensors, 2017, 17, 1725.	3.8	18
330	Tunable passively Q-switched thulium-fluoride fiber laser in the S+/S band (14500 to 15120  nm) region using a single-walled carbon-nanotube-based saturable absorber. Applied Optics, 2017, 56, 3841.	2.1	7
331	Axial stress profiling for few-mode fiber Bragg grating based on resonant wavelength shifts during etching process. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1894.	2.1	6
332	All-fiber multimode interferometer for the generation of a switchable multi-wavelength thulium-doped fiber laser. Applied Optics, 2017, 56, 5865.	1.8	16
333	Tunable wavelength generation in the $1< i>\hat{A}\mu$ m region incorporating a 16-channel arrayed waveguide grating (AWG). Laser Physics, 2017, 27, 125101.	1.2	6
334	All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid. Applied Optics, 2017, 56, 200.	2.1	26
335	Formation of enhanced regenerated grating in few-mode fiber by CO_2 laser pretreatment. Applied Optics, 2017, 56, 9882.	1.8	4
336	Tunable microwave generation using dual-wavelength Brillouin O-band fiber laser. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012045.	0.6	0
337	Dual-Wavelength Generation with Terahertz Spacing Using GaAs–AlGaAs Microring Resonator Waveguides. Journal of Computational and Theoretical Nanoscience, 2017, 14, 330-334.	0.4	2
338	Stable dual-wavelength erbium-doped fiber laser using novel fabricated side-polished arc-shaped fiber with deposited ZnO nanoparticles. Chinese Optics Letters, 2017, 15, 011403-11407.	2.9	12
339	Generation of passively Q-switched fiber laser at 1 \hat{l} 4m by using MoSSe as a saturable absorber. Chinese Optics Letters, 2017, 15, 020601-20605.	2.9	11
340	Investigation of ellipticity and pump power in a passively mode-locked fiber laser using the nonlinear polarization rotation technique. Chinese Optics Letters, 2017, 15, 051402-51406.	2.9	2
341	Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber. Chinese Physics Letters, 2016, 33, 074208.	3.3	10
342	A WIDEBAND AND FLAT-GAIN OF AN AMPLIFIER BY USING ZIRCONIA-BASED ERBIUM-DOPED FIBER (ZR-EDF) FOR SINGLE PASS PPERATION. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0

#	Article	IF	CITATIONS
343	TEMPORAL SOLITON: GENERATION AND APPLICATIONS IN OPTICAL COMMUNICATIONS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
344	Multi dual-wavelength generation using InGaAsP/InP passive microring resonator with two sides apodized gratings. Materials Express, 2016, 6, 245-251.	0.5	2
345	THE ANALYSIS OF PHASE, DISPERSION AND GROUP DELAY IN INGAASP/INP MICRORING RESONATOR. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
346	Nano-Anatase TiO2 for High Performance Optical Humidity Sensing on Chip. Sensors, 2016, 16, 39.	3.8	27
347	D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring. Sensors, 2016, 16, 1505.	3.8	29
348	Variable Waist-Diameter Mach–Zehnder Tapered-Fiber Interferometer as Humidity and Temperature Sensor. IEEE Sensors Journal, 2016, 16, 5987-5992.	4.7	39
349	New device structures for graphene nanoribbon field effect transistors. Materials Express, 2016, 6, 265-270.	0.5	3
350	Effect of titanium dioxide (TiO ₂) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement. Materials Express, 2016, 6, 501-508.	0.5	28
351	Graphene (oxide) for photonic integration. , 2016, , .		0
352	Dual-wavelength nano-engineered Thulium-doped fiber laser via bending of singlemode-multimode-singlemode fiber structure. Optical Fiber Technology, 2016, 32, 96-101.	2.7	8
353	Modal sensitivity enhancement of few-mode fiber Bragg gratings for refractive index measurement. , 2016, , .		4
354	Fabrication of thermal enduring FBG sensor based on thermal induced reversible effect. Sensors and Actuators A: Physical, 2016, 242, 111-115.	4.1	3
355	Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber. Applied Optics, 2016, 55, 4277.	2.1	50
356	Domain-wall dark pulse generation in fiber laser incorporating MoS2. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	27
357	Generation of Q-Switched Mode-Locked Erbium-Doped Fiber Laser Operating in Dark Regime. Chinese Physics Letters, 2016, 33, 034201.	3.3	2
358	Q-switched 2µm thulium bismuth co-doped fiber laser with multi-walled carbon nanotubes saturable absorber. Optics and Laser Technology, 2016, 83, 89-93.	4.6	4
359	Multi-wavelength mode-locked erbium-doped fiber laser with photonic crystal fiber in figure-of-eight cavity. Optik, 2016, 127, 5894-5898.	2.9	3
360	Fabrication and characterization of laser-ablated cladding resonances of two different-diameter photosensitive optical fibers. Sensors and Actuators A: Physical, 2016, 243, 111-116.	4.1	4

#	Article	IF	Citations
361	An Efficient Hybrid MANET-DTN Routing Scheme for OLSR. Wireless Personal Communications, 2016, 89, 1335-1354.	2.7	17
362	Fabrication and characterization of high order filter based on resonance in hybrid multi-knots microfiber structure. Optics and Laser Technology, 2016, 78, 120-124.	4.6	9
363	Mode-locked generation in thulium-doped fiber linear cavity laser. Optik, 2016, 127, 11119-11123.	2.9	8
364	Tunable multi-wavelength generation using InGaAsP/InP microring resonator with detectable resonance wavelength shift due to a sensing cladding section. Chinese Journal of Physics, 2016, 54, 780-787.	3.9	9
365	Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL). Laser Physics, 2016, 26, 115102.	1.2	8
366	Measurement of fiber non-linearity based on four-wave mixing with an ASE source. Optical Fiber Technology, 2016, 32, 23-29.	2.7	4
367	Single and Double Brillouin Frequency Spacing Multi-Wavelength Brillouin Erbium Fiber Laser With Micro-Air Gap Cavity. IEEE Journal of Quantum Electronics, 2016, 52, 1-5.	1.9	19
368	Silicon-based microring resonators for multi-solitons generation for THz communication. Optical and Quantum Electronics, 2016, 48, 1.	3.3	10
369	Soliton modeâ€ocked erbiumâ€doped fibre laser with mechanically exfoliated molybdenum disulphide saturable absorber. IET Optoelectronics, 2016, 10, 169-173.	3.3	6
370	Ag-nanoparticle as a Q switched device for tunable C-band fiber laser. Optics Communications, 2016, 381, 85-90.	2.1	29
371	Using a black phosphorus saturable absorber to generate dual wavelengths in a Q-switched ytterbium-doped fiber laser. Laser Physics Letters, 2016, 13, 085102.	1.4	70
372	Silver nanoparticle-film based saturable absorber for passively $\langle i \rangle Q \langle j \rangle$ -switched erbium-doped fiber laser (EDFL) in ring cavity configuration. Laser Physics, 2016, 26, 095103.	1.2	29
373	Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating. Sensors and Actuators A: Physical, 2016, 248, 199-205.	4.1	35
374	A black phosphorus-based tunable Q-switched ytterbium fiber laser. Laser Physics Letters, 2016, 13, 095103.	1.4	36
375	Switchable soliton mode-locked and multi-wavelength operation in thulium-doped all-fiber ring laser. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650034.	1.8	10
376	Q-switched dual-wavelength fiber laser using a graphene oxide saturable absorber and singlemode–multimode–singlemode fiber structure. Laser Physics Letters, 2016, 13, 105105.	1.4	6
377	Dual-Wavelength Holmium-Doped Fiber Laser Pumped by Thulium–Ytterbium Co-Doped Fiber Laser. Chinese Physics Letters, 2016, 33, 054202.	3.3	2
378	Black phosphorus crystal as a saturable absorber for both a Q-switched and mode-locked erbium-doped fiber laser. RSC Advances, 2016, 6, 72692-72697.	3.6	83

#	Article	IF	Citations
379	Generation of mode-locked erbium-doped fiber laser using MoSe ₂ as saturable absorber. Optical Engineering, 2016, 55, 076115.	1.0	19
380	Q-switched erbium-doped fiber laser operating at 1502nm with molybdenum disulfide saturable absorber. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650025.	1.8	12
381	Zinc oxide (ZnO) nanoparticles as saturable absorber in passively Q-switched fiber laser. Optics Communications, 2016, 381, 72-76.	2.1	85
382	The generation of passive dual wavelengths Q-switched YDFL by MoSe ₂ film. Laser Physics Letters, 2016, 13, 115102.	1.4	10
383	Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime. , 2016, , .		2
384	Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at $2.0 < i > \hat{A}\mu < /i > m$. Laser Physics Letters, 2016, 13, 126201.	1.4	12
385	Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul. Scientific Reports, 2016, 6, 19891.	3.3	108
386	Q-switched ytterbium-doped fiber laser with zinc oxide based saturable absorber. Laser Physics, 2016, 26, 115107.	1.2	25
387	Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation. Scientific Reports, 2016, 6, 23813.	3.3	22
388	LP ₀₁ –LP ₁₁ Cross-Mode Interference in a Chirped Grating Inscribed in Two-Mode Fiber. IEEE Journal of Quantum Electronics, 2016, 52, 1-6.	1.9	3
389	A new approach to study the effect of generation rate on drain-source current of bilayer graphene transistors. Indian Journal of Physics, 2016, 90, 1127-1132.	1.8	0
390	Tunable single wavelength erbium-doped fiber ring laser based on in-line Mach-Zehnder strain. Optik, 2016, 127, 8326-8332.	2.9	25
391	Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 \hat{l} 4m using arrayed waveguide grating (AWG). Optics Communications, 2016, 380, 195-200.	2.1	11
392	Humidity sensor based on microfiber resonator with reduced graphene oxide. Optik, 2016, 127, 3158-3161.	2.9	35
393	Thermal activation of regenerated fiber Bragg grating in few mode fibers. Optical Fiber Technology, 2016, 28, 7-10.	2.7	2
394	Generation of stable and narrow spacing dual-wavelength ytterbium-doped fiber laser using a photonic crystal fiber. Journal of Modern Optics, 2016, 63, 968-973.	1.3	3
395	2Â×Â2 MIMO-OFDM-RoF generation and transmission of double V-Band signals using a microring resonator system. Optical and Quantum Electronics, 2016, 48, 1.	3.3	5
396	Broadband tuning in a passively Q-switched erbium doped fiber laser (EDFL) via multiwall carbon nanotubes/polyvinyl alcohol (MWCNT/PVA) saturable absorber. Optics Communications, 2016, 365, 54-60.	2.1	10

#	Article	IF	Citations
397	Femtosecond mode-locked erbium-doped fiber laser based on MoS2–PVA saturable absorber. Optics and Laser Technology, 2016, 82, 145-149.	4.6	36
398	Demonstration of a Periodic Passband Filter Based on Coupled Microfiber Knots. IEEE Photonics Technology Letters, 2016, 28, 1061-1064.	2.5	8
399	Highly stable and tunable narrow-spacing dual-wavelength ytterbium-doped fiber using a microfiber Mach–Zehnder interferometer. Optical Engineering, 2016, 55, 026114.	1.0	7
400	405 nm laser processing of thin SU-8 polymer film. Optik, 2016, 127, 1651-1655.	2.9	2
401	Passively Q-switched erbium-doped fiber laser at C-band region based on WS_2 saturable absorber. Applied Optics, 2016, 55, 1001.	2.1	60
402	Generation of tunable multi-wavelength EDFL by using graphene thin film as nonlinear medium and stabilizer. Optics and Laser Technology, 2016, 81, 67-69.	4.6	15
403	C-Band Q-Switched Fiber Laser Using Titanium Dioxide (TiO 2) As Saturable Absorber. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	92
404	Tunable dual-wavelength ytterbium-doped fiber laser using a strain technique on microfiber Mach–Zehnder interferometer. Applied Optics, 2016, 55, 778.	2.1	17
405	Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid. Journal of Modern Optics, 2016, 63, 750-755.	1.3	14
406	S-band Q-switched fiber laser using molybdenum disulfide (MoS ₂) saturable absorber. Laser Physics Letters, 2016, 13, 035103.	1.4	33
407	Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber. IEEE Sensors Journal, 2016, 16, 1659-1664.	4.7	8
408	Realization of spectral tunable filter based on thermal effect in microfiber structure. Optical Fiber Technology, 2016, 28, 38-41.	2.7	1
409	Flat-gain wide-band erbium doped fiber amplifier with hybrid gain medium. Optik, 2016, 127, 2481-2484.	2.9	8
410	Generation of an ultra-stable dual-wavelength ytterbium-doped fiber laser using a photonic crystal fiber. Laser Physics, 2016, 26, 025101.	1.2	6
411	Highly responsive NaCl detector based on inline microfiber Mach–Zehnder interferometer. Sensors and Actuators A: Physical, 2016, 237, 56-61.	4.1	38
412	Q-switched Erbium-doped fiber laser using MoSe 2 as saturable absorber. Optics and Laser Technology, 2016, 79, 20-23.	4.6	42
413	Exploiting Edge Effect to Control Generation Rate and Breakdown Voltage in Graphene Nanoribbon Field Effect Transistors. Plasmonics, 2016, 11, 573-577.	3.4	2
414	Q-switched thulium-doped fiber laser operating at 1940Ânm region using a pencil-core as saturable absorber. Journal of Modern Optics, 2016, 63, 783-787.	1.3	4

#	Article	IF	CITATIONS
415	Microring resonator for transmission of solitons via wired/wireless optical communication. Journal of Optics (India), 2016, 45, 255-259.	1.7	8
416	InGaAsP/InP Microring Resonator (MRR) Waveguide Used to Generate Soliton Comb with Tunable Channel Spacing. Journal of Computational and Theoretical Nanoscience, 2016, 13, 4829-4834.	0.4	1
417	Highly Efficient Cladding Pumped Dual-Wavelength Thulium Ytterbium Co-Doped Fiber Laser. Acta Physica Polonica A, 2016, 130, 1332-1335.	0.5	1
418	Semiconducting subwavelength and nonsubwavelength grating microring resonator as a femtosecond time delayer: a comparative analysis. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2073.	2.1	6
419	Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2. PLoS ONE, 2016, 11, e0153949.	2.5	32
420	Development of CW and Pulsed Thulium Ytterbium Co-doped Fiber Lasers Using Nano-engineered Yttria-alimina-silica Based Gain Medium in Conjunction with Cladding Pumping Technique. Current Nanoscience, 2016, 12, 299-308.	1.2	2
421	Passively Q-switched fibre laser based on interaction of evanescent field in optical microfibre with graphene-oxide saturable absorber. Ukrainian Journal of Physical Optics, 2016, 17, 58.	13.0	1
422	Multiwavelength generation using an add-drop microring resonator integrated with an InGaAsP/InP sampled grating distributed feedback. Chinese Optics Letters, 2016, 14, 021301-21306.	2.9	11
423	Generation of multi-wavelength erbium-doped fiber laser by using MoSe2 thin film as nonlinear medium and stabilizer. Chinese Optics Letters, 2016, 14, 041901-41904.	2.9	9
424	Titanium dioxide-based Q-switched dual wavelength in the 1 micron region. Chinese Optics Letters, 2016, 14, 091403-91407.	2.9	18
425	Impact of CO2Laser Pretreatment on the Thermal Endurance of Bragg Gratings. Journal of the Optical Society of Korea, 2016, 20, 575-578.	0.6	1
426	Mode-locked Thulium Ytterbium co-Doped Fiber Laser with Graphene Saturable Absorber. Photonics Letters of Poland, 2016, 8, 104.	0.4	3
427	D-Shaped Polarization Maintaining Fiber Sensor for Simultaneous Monitoring of Refractive Index and Temperature. , $2016, $, .		0
428	GENERATION OF Q-SWITCHED THULIUM-DOPED FIBER LASER (TDFL) USING DIFFERENTSATURABLE ABSORBERS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
429	Qâ€switching and modeâ€locking pulse generation with graphene oxide paperâ€based saturable absorber. Journal of Engineering, 2015, 2015, 208-214.	1.1	4
430	Investigation of thermal effects in a resonance condition of microfibre doubleâ€knot resonators as highâ€order filter. Micro and Nano Letters, 2015, 10, 580-582.	1.3	1
431	A Stable Dual-wavelength Thulium-doped Fiber Laser at 1.9 ν m Using Photonic Crystal Fiber. Scientific Reports, 2015, 5, 14537.	3.3	73
432	Four wave mixing techniques in measuring HNLF. AIP Conference Proceedings, 2015, , .	0.4	1

#	Article	IF	Citations
433	Increment of Access Points in Integrated System of Wavelength Division Multiplexed Passive Optical Network Radio over Fiber. Scientific Reports, 2015, 5, 11897.	3.3	38
434	Radio Frequency Signal Generation and Wireless Transmission Using PANDA and Add/Drop Systems. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1770-1774.	0.4	8
435	Fabrication of polymer microfiber by direct drawing. Microwave and Optical Technology Letters, 2015, 57, 820-823.	1.4	15
436	<scp>PMMA</scp> microfiber coated with alâ€doped ZnO nanostructures for detecting uric acid. Microwave and Optical Technology Letters, 2015, 57, 2455-2457.	1.4	12
437	DETECTION OF DIFFERENT CONCENTRATIONS OF URIC ACID USING TAPERED SILICA OPTICAL SENSOR COATED WITH ZINC OXIDE (ZNO). Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	4
438	Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser. Quantum Electronics, 2015, 45, 713-716.	1.0	2
439	Relative Humidity Sensor Employing Optical Fibers Coated with ZnO Nanostructures. Indian Journal of Science and Technology, 2015, 8, .	0.7	18
440	Experimental Measurement of Fiber-Wireless Transmission via Multimode-Locked Solitons From a Ring Laser EDF Cavity. IEEE Photonics Journal, 2015, 7, 1-9.	2.0	16
441	Switchable dual-wavelength CNT-based Q-switched using arrayed waveguide gratings (AWG). Applied Physics B: Lasers and Optics, 2015, 118, 269-274.	2.2	6
442	Harmonic Dark Pulse Emission in Erbium-Doped Fiber Laser. Chinese Physics Letters, 2015, 32, 034203.	3.3	10
443	Generation of switchable domain wall and Cubic–Quintic nonlinear Schrödinger equation dark pulse. Optics and Laser Technology, 2015, 73, 127-129.	4.6	18
444	Wideâ€range inâ€fibre Fabryâ€Perot resonator for ultrasonic sensing. IET Optoelectronics, 2015, 9, 136-140.	3.3	3
445	Passively dual-wavelength Q-switched ytterbium doped fiber laser using Selenium Bismuth as saturable absorber. Journal of Modern Optics, 2015, 62, 1550-1554.	1.3	16
446	Generation of Femtosecond Soliton Tweezers Using a Half-Panda System for Modeling the Trapping of a Human Red Blood Cell. Journal of Computational and Theoretical Nanoscience, 2015, 12, 10-18.	0.4	7
447	Analytical Treatment of the Ring Resonator Passive Systems and Bandwidth Characterization Using Directional Coupling Coefficients. Journal of Computational and Theoretical Nanoscience, 2015, 12, 418-424.	0.4	7
448	Fiber Bragg Grating Inscription in a Thin-Core Fiber for Displacement Measurement. IEEE Photonics Technology Letters, 2015, 27, 1108-1111.	2.5	14
449	Qâ€switched thulium–ytterbium coâ€doped fibre laser using newly developed octagonal shaped inner cladding doubleâ€clad active fibre and multiâ€walled carbon nanotubes passive saturable absorber. IET Optoelectronics, 2015, 9, 131-135.	3.3	4
450	Evolution of the Polarizing Effect of <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX">\$ext{MoS}_{2}\$</tex-math></inline-formula></named-content> . IEEE Photonics Journal, 2015, 7, 1-10.	2.0	21

#	Article	IF	CITATIONS
451	Optical Amplification of Tweezers and Bright Soliton Using an Interferometer Ring Resonator System. Journal of Computational and Theoretical Nanoscience, 2015, 12, 624-629.	0.4	5
452	Generation of Cubic-Quintic nonlinear schr& #x00F6; dinger equation dark pulse., 2015,,.		0
453	Investigation of nitrogen doped graphene as saturable absorber in Thulium-Doped Fiber Laser. , 2015, , .		1
454	Effect of CO ₂ Laser Annealing on Stress Applying Parts Contributing Toward Birefringence Modification in Regenerated Grating in Polarization Maintaining Fiber. IEEE Photonics Journal, 2015, 7, 1-9.	2.0	6
455	Stable Dual-Wavelength Coherent Source With Tunable Wavelength Spacing Generated By Spectral Slicing a Mode-Locked Laser Using Microring Resonator. IEEE Photonics Journal, 2015, 7, 1-11.	2.0	12
456	Enhanced Erbium–Zirconia–Yttria–Aluminum Co-Doped Fiber Amplifier. IEEE Photonics Journal, 2015, 7, 1-7.	2.0	19
457	Low-Threshold <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX">\$Q\$</tex-math></inline-formula></named-content> -Switched Erbium-Doped Fiber Laser Using Molybdenum Disulphide Saturable Absorber Prepared Through Evaporitic Formation. IEEE Photonics Journal. 2015. 7. 1-7.	2.0	4
458	Tilted Fiber Bragg Grating Sensors for Reinforcement Corrosion Measurement in Marine Concrete Structure. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 3510-3516.	4.7	24
459	Nanometer Bandwidth Soliton Generation and Experimental Transmission Within Nonlinear Fiber Optics Using an Add-Drop Filter System. Journal of Computational and Theoretical Nanoscience, 2015, 12, 221-225.	0.4	17
460	Comparison of Control Light Using Kramers–Kronig Method by Three Waveguides. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1864-1868.	0.4	8
461	Ultrahigh-Temperature Chirped Fiber Bragg Grating Through Thermal Activation. IEEE Photonics Technology Letters, 2015, 27, 1305-1308.	2.5	13
462	Tunable S-Band Q-Switched Fiber Laser Using Bi ₂ Se ₃ as the Saturable Absorber. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	28
463	Numerical computation of solitonic pulse generation for terabit/sec data transmission. Optical and Quantum Electronics, 2015, 47, 1765-1777.	3.3	15
464	Optical frequency comb generation based on chirping of Mach–Zehnder Modulators. Optics Communications, 2015, 344, 139-146.	2.1	30
465	A Switchable Figure Eight Erbium-Doped Fiber Laser Based on Inter-Modal Beating By Means of Non-Adiabatic Microfiber. Journal of Lightwave Technology, 2015, 33, 528-534.	4.6	29
466	Dual-wavelength passively Q-switched Erbium Ytterbium codoped fiber laser based on a nonlinear polarization rotation technique. Microwave and Optical Technology Letters, 2015, 57, 530-533.	1.4	7
467	Multi wavelength mode-lock soliton generation using fiber laser loop coupled to an add-drop ring resonator. Optical and Quantum Electronics, 2015, 47, 2455-2464.	3.3	28
468	Application of Fano resonance effects in optical antennas formed by regular clusters of nanospheres. Applied Physics A: Materials Science and Processing, 2015, 118, 139-150.	2.3	6

#	Article	IF	CITATIONS
469	Characterization of phasemask interference visibility and the evolution of grating visibility during grating formation. Measurement: Journal of the International Measurement Confederation, 2015, 64, 163-167.	5.0	4
470	Mode-Locked Thulium Ytterbium Co-Doped Fiber Laser with Graphene Oxide Paper Saturable Absorber. Chinese Physics Letters, 2015, 32, 014204.	3.3	8
471	Tunable dual-wavelength thulium-doped fiber laser at 1.8Âμm region using spatial-mode beating. Journal of Modern Optics, 2015, 62, 892-896.	1.3	20
472	Characterization of Mode Coupling in Few-Mode FBG With Selective Mode Excitation. IEEE Photonics Technology Letters, 2015, 27, 1713-1716.	2.5	49
473	All optical ultra-wideband signal generation and transmission using mode-locked laser incorporated with add-drop microring resonator. Laser Physics Letters, 2015, 12, 065105.	1.4	31
474	Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands. International Journal of Molecular Sciences, 2015, 16, 11034-11054.	4.1	53
475	Multi-lobed double-clad Erbium-Ytterbium co-doped Q-switched fiber laser based on nonlinear polarisation rotation technique. Journal of Nonlinear Optical Physics and Materials, 2015, 24, 1550002.	1.8	8
476	Qâ€switched Brillouin fibre laser with multiâ€wall carbon nanotube saturable absorber. IET Optoelectronics, 2015, 9, 96-100.	3.3	4
477	Performance enhancement of pre-spectrum slicing technique for wavelength conversion. Optics Communications, 2015, 350, 154-159.	2.1	3
478	Fundamental and harmonic soliton mode-locked erbium-doped fiber laser using a single-walled carbon nanotubes embedded in poly (ethylene oxide) film saturable absorber. Proceedings of SPIE, 2015, , .	0.8	0
479	Optical Soliton Signals Propagation in Fiber Waveguides. SpringerBriefs in Applied Sciences and Technology, 2015, , 1-11.	0.4	2
480	Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement. Sensors and Actuators A: Physical, 2015, 228, 62-68.	4.1	71
481	Passively mode-locked laser using an entirely centred erbium-doped fiber. Laser Physics, 2015, 25, 045105.	1.2	2
482	A passively Q-switched ytterbium-doped fiber laser based on a few-layer Bi ₂ Se ₃ saturable absorber. Laser Physics, 2015, 25, 065102.	1.2	15
483	Multi-wavelength Q-switched Erbium-doped fiber laser with photonic crystal fiber and graphene – Polyethylene oxide saturable absorber. Optik, 2015, 126, 1495-1498.	2.9	10
484	Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO_2-laser annealing. Optics Letters, 2015, 40, 748.	3.3	20
485	Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 17 μm and 18 μm band. Optics Express, 2015, 23, 19681.	3.4	12
486	Photosensitivity of gallium-doped silica core fiber to 193  nm ArF excimer laser. Applied Optics, 2015, 54, 5508.	' 2.1	5

#	Article	IF	CITATIONS
487	Observation of grating regeneration by direct CO_2 laser annealing. Optics Express, 2015, 23, 452.	3.4	18
488	Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers. Optics Express, 2015, 23, 2837.	3.4	45
489	Performance analysis of an all-optical OFDM system in presence of non-linear phase noise. Optics Express, 2015, 23, 3886.	3.4	22
490	Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber. Optik, 2015, 126, 2950-2954.	2.9	8
491	Polarization-independent ASE four-wave mixing in a fast semiconductor optical amplifier. Optics Communications, 2015, 355, 498-503.	2.1	5
492	PCF-Cavity FBG Fabry-Perot Resonator for Simultaneous Measurement of Pressure and Temperature. IEEE Sensors Journal, 2015, 15, 6921-6925.	4.7	26
493	Measurement of grating visibility of a fiber Bragg grating based on bent-spectral analysis. Applied Optics, 2015, 54, 1146.	1.8	3
494	Noncontact Optical Displacement Sensor Using an Adiabatic U-Shaped Tapered Fiber. IEEE Sensors Journal, 2015, 15, 5388-5392.	4.7	13
495	Q-Switched Yb-Doped Fiber Ring Laser with a Saturable Absorber Based on a Graphene Polyvinyl Alcohol Film. Journal of Russian Laser Research, 2015, 36, 389-394.	0.6	7
496	Dual-Wavelength Erbium-Doped Fiber Laser to Generate Terahertz Radiation Using Photonic Crystal Fiber. Journal of Lightwave Technology, 2015, 33, 5038-5046.	4.6	41
497	Carriers Generated by Mode-Locked Laser to Increase Serviceable Channels in Radio Over Free Space Optical Systems. IEEE Photonics Journal, 2015, 7, 1-12.	2.0	15
498	Enhancement of Thulium–Ytterbium doped fiber laser efficiency using dualâ€pumping method. Microwave and Optical Technology Letters, 2015, 57, 285-287.	1.4	1
499	In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature. IEEE Photonics Technology Letters, 2015, 27, 58-61.	2.5	43
500	Tapered Plastic Optical Fiber Coated With Al-Doped ZnO Nanostructures for Detecting Relative Humidity. IEEE Sensors Journal, 2015, 15, 845-849.	4.7	38
501	Stabilized single longitudinal mode fibre ring laser based on an inline dual taper Mach Zehnder interferometer filter coated with graphene oxide. Optics Communications, 2015, 341, 140-146.	2.1	8
502	Effective use of an EDFA and Raman pump residual powers via a Bi-EDF in L-band multi-wavelength fiber laser generation. Laser Physics, 2015, 25, 015104.	1.2	3
503	Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter. Optik, 2015, 126, 179-183.	2.9	12
504	A Study of Relative Humidity Fiber-Optic Sensors. IEEE Sensors Journal, 2015, 15, 1945-1950.	4.7	58

#	Article	IF	Citations
505	Dynamic characteristics of a multi-wavelength Brillouin–Raman fiber laser assisted by multiple four-wave mixing processes in a ring cavity. Optics and Laser Technology, 2015, 66, 63-67.	4.6	3
506	A Q-switched fibre laser operating in the 2 um region based on nonlinear polarization rotation technique. Ukrainian Journal of Physical Optics, 2015, 16, 32.	13.0	5
507	Mode-locked 2 mu m fiber laser with a multi-walled carbon nanotube as a saturable absorber. Chinese Optics Letters, 2015, 13, 030602-30605.	2.9	14
508	Sideband-controllable soliton pulse with bismuth-based erbium-doped fiber. Chinese Optics Letters, 2015, 13, 111406-111408.	2.9	10
509	MRR Systems and Soliton Communication. SpringerBriefs in Applied Sciences and Technology, 2015, , 13-30.	0.4	3
510	Fabrication of regenerated grating using carbon dioxide laser., 2015,,.		1
511	Evaluation of the tapered PMMA fiber sensor response due to the ionic interaction within electrolytic solutions. Journal of Modern Optics, 2014, 61, 154-160.	1.3	6
512	Nonadiabatic microfiber based modeâ€locked erbiumâ€doped fiber laser using graphene. Microwave and Optical Technology Letters, 2014, 56, 1670-1673.	1.4	1
513	Nonlinear Polarization Rotation-Based Mode-Locked Erbium-Doped Fiber Laser with Three Switchable Operation States. Chinese Physics Letters, 2014, 31, 094206.	3.3	17
514	S-band SLM distributed Bragg reflector fiber laser. Laser Physics, 2014, 24, 065109.	1.2	2
515	Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite. Microwave and Optical Technology Letters, 2014, 56, 380-382.	1.4	25
516	Study of a fiber optic humidity sensor based on agarose gel. Journal of Modern Optics, 2014, 61, 244-248.	1.3	26
517	All-Optical Graphene Oxide Humidity Sensors. Sensors, 2014, 14, 24329-24337.	3.8	61
518	Qâ€switched thuliumâ€doped fibre laser operating at 1900Ânm using multiâ€layered graphene based saturable absorber. IET Optoelectronics, 2014, 8, 155-160.	3.3	6
519	Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG. Sensors and Actuators B: Chemical, 2014, 202, 959-963.	7.8	28
520	Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors, 2014, 14, 7451-7488.	3.8	299
521	Q-switched Yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber. Microwave and Optical Technology Letters, 2014, 56, 1770-1773.	1.4	20
522	Long Wavelength Plasmonic Absorption Enhancement in Silicon Using Optical Lithography Compatible Core-Shell-Type Nanowires. International Journal of Photoenergy, 2014, 2014, 1-6.	2.5	3

#	Article	IF	Citations
523	S-Band Gain Improvement Using a Thulium–Aluminum Co-Doped Photonic Crystal Fiber Amplifier. IEEE Photonics Journal, 2014, 6, 1-10.	2.0	4
524	Q-Switching and Mode-Locking in Highly Doped Zr\$_{2}\$O\$_{3}\$–Al\$_{2}\$ O\$_{3}\$–Er \$_{2}\$O\$_{3}\$-Doped Fiber Lasers Using Graphene as a Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 9-16.	2.9	5
525	W-Band OFDM for Radio-over-Fiber Direct-Detection Link Enabled by Frequency Nonupling Optical Up-Conversion. IEEE Photonics Journal, 2014, 6, 1-7.	2.0	23
526	Tunable single Stokes extraction from 20  GHz Brillouin fiber laser using ultranarrow bandwidth optical filter. Applied Optics, 2014, 53, 6944.	1.8	4
527	Gain-shift induced by dopant concentration ratio in a thulium-bismuth doped fiber amplifier. Optics Express, 2014, 22, 7075.	3.4	6
528	All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror. Optics Express, 2014, 22, 22794.	3.4	5
529	Mode-locked thulium bismuth codoped fiber laser using graphene saturable absorber in ring cavity: reply. Applied Optics, 2014, 53, 555.	1.8	1
530	Generation and transmission of 3 $\tilde{A}-3$ w-band multi-input multi-output orthogonal frequency division multiplexing-radio-over-fiber signals using micro-ring resonators. Applied Optics, 2014, 53, 8049.	2.1	31
531	Q-Switching Pulse Generation with Thulium-Doped Fiber Saturable Absorber. Chinese Physics Letters, 2014, 31, 124203.	3.3	15
532	Tapered Plastic Optical Fiber Coated With Graphene for Uric Acid Detection. IEEE Sensors Journal, 2014, 14, 1704-1709.	4.7	36
533	Mode-locked soliton erbium-doped fiber laser using a single-walled carbon nanotubes embedded in polyethylene oxide thin film saturable absorber. Journal of Modern Optics, 2014, 61, 541-545.	1.3	8
534	Evanescent wave optical trapping and transport of polystyrene microspheres on microfibers. Microwave and Optical Technology Letters, 2014, 56, 2630-2634.	1.4	9
535	All-Optical Generation of Two IEEE802.11n Signals for 2 <inline-formula> <tex-math notation="TeX">\$imes\$</tex-math></inline-formula> 2 MIMO-RoF via MRR System. IEEE Photonics Journal, 2014, 6, 1-11.	2.0	34
536	Observation of mode-coupling in few mode fiber Bragg gratings. , 2014, , .		2
537	Graphene based Q-switched tunable S-band fiber laser incorporating arrayed waveguide gratings (AWG). Journal of Nonlinear Optical Physics and Materials, 2014, 23, 1450004.	1.8	9
538	All-incoherent wavelength conversion in highly nonlinear fiber using four-wave mixing. Optical Engineering, 2014, 53, 096112.	1.0	6
539	Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor. Journal of Biomedical Optics, 2014, 19, 057009.	2.6	3
540	Optical Gaussian Notch Filter Based on Periodic Microbent Fiber Bragg Grating. IEEE Photonics Journal, 2014, 6, 1-8.	2.0	14

#	Article	IF	CITATIONS
541	Passively Q-Switched EDFL Using a Multi-Walled Carbon Nanotube Polymer Composite Based on a Saturable Absorber. Chinese Physics Letters, 2014, 31, 034204.	3.3	13
542	Investigation of spontaneous Brillouin scattering generation based on non-adiabatic microfibres. Laser Physics Letters, 2014, 11, 125105.	1.4	3
543	Brillouin Lasing with a Reduced Self-Pulsing Characteristic Using a Short-Length Erbium-Doped Fiber as the Nonlinear Gain Medium. Chinese Physics Letters, 2014, 31, 054202.	3.3	0
544	Four-wave mixing analyses for future ultrafast wavelength conversion at 0.64 $\hat{a} \in \infty$ $\hat{a} \in \infty$ Tb / s in a semiconductor optical amplifier. Optical Engineering, 2014, 53, 116111.	1.0	0
545	Square pulse emission with ultraâ€low repetition rate utilising nonâ€linear polarisation rotation technique. Journal of Engineering, 2014, 2014, 517-521.	1.1	1
546	Tapered plastic optical fiber coated with single wall carbon nanotubes polyethylene oxide composite for measurement of uric acid concentration. Sensor Review, 2014, 34, 75-79.	1.8	9
547	Multiwall carbon nanotube polyvinyl alcohol-based saturable absorber in passively Q-switched fiber laser. Applied Optics, 2014, 53, 7025.	1.8	16
548	Q-switched fibre laser using 21cm Bismuth-erbium doped fibre and graphene oxide as saturable absorber. Optics Communications, 2014, 310, 53-57.	2.1	7
549	Mode-locked L-band bismuth–erbium fiber laser using carbon nanotubes. Applied Physics B: Lasers and Optics, 2014, 115, 407-412.	2.2	22
550	Passive Q-switched Erbium-doped fiber laser with graphene–polyethylene oxide saturable absorber in three different gain media. Indian Journal of Physics, 2014, 88, 727-731.	1.8	12
551	Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity. Sensors and Actuators A: Physical, 2014, 210, 190-196.	4.1	54
552	Graphene oxide-based waveguide polariser: From thin film to quasi-bulk. Optics Express, 2014, 22, 11090.	3.4	42
553	Optical Fiber Sensing of Salinity and Liquid Level. IEEE Photonics Technology Letters, 2014, 26, 1742-1745.	2.5	34
554	1.3 and 1.55 \$mu{m m}\$ Thermally Regenerated Gratings in Hydrogenated Boron/Germanium Co-Doped Photosensitivity Fiber. IEEE Sensors Journal, 2014, 14, 1352-1356.	4.7	16
555	Soliton Mode-Locked Erbium-Doped Fiber Laser Using Non-Conductive Graphene Oxide Paper. IEEE Journal of Quantum Electronics, 2014, 50, 85-87.	1.9	9
556	Tunable microwave output over a wide RF region generated by an optical dual-wavelength fiber laser. Laser Physics, 2014, 24, 105116.	1,2	9
557	Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber. Laser Physics, 2014, 24, 115201.	1.2	1
558	Multi-wavelength fiber laser generation by using optical wavelength conversion. Laser Physics, 2014, 24, 065105.	1.2	5

#	Article	IF	Citations
559	Qâ€switched thuliumâ€doped fiber laser operating at 1920 nm region with multiwalled carbon nanotubes embedded in polyvinyl alcohol. Microwave and Optical Technology Letters, 2014, 56, 2817-2819.	1.4	8
560	Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber. Laser Physics, 2014, 24, 105101.	1.2	11
561	Thulium Bismuth Co-Doped Fiber Lasers at 1901 nm by 802 nm Pumping. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 132-137.	2.9	1
562	Q-switched erbium-doped fiber laser using multi-layer graphene based saturable absorber. Journal of Nonlinear Optical Physics and Materials, 2014, 23, 1450009.	1.8	7
563	Transverse localization of light in 1D disordered waveguide lattices in the presence of a photonic bandgap. Laser Physics, 2014, 24, 045001.	1.2	3
564	Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber. Applied Optics, 2014, 53, 3581.	1.8	29
565	Single-longitudinal-mode operation in tunable novel zirconia–yttria–alumina–erbium-doped fiber laser. Laser Physics, 2014, 24, 085106.	1.2	3
566	Closely spaced dual-wavelength fiber laser using an ultranarrow bandwidth optical filter for low radio frequency generation. Applied Optics, 2014, 53, 4123.	1.8	0
567	Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber. Sensors and Actuators A: Physical, 2014, 219, 94-99.	4.1	41
568	Multi-wavelength Q-switched Erbium-doped fiber laser with photonic crystal fiber and multi-walled carbon nanotubes. Journal of Modern Optics, 2014, 61, 1133-1139.	1.3	16
569	Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 166-173.	2.9	28
570	Circuit Model of Fano Resonance on Tetramers, Pentamers, and Broken Symmetry Pentamers. Plasmonics, 2014, 9, 1303-1313.	3.4	19
571	Graphene oxide multilayer structures for polarisation selection and other functionalities in planar waveguide based integrated photonics. , 2014, , .		0
572	Supercontinuum generation from a sub-megahertz repetition rate femtosecond pulses based on nonlinear polarization rotation technique. Journal of Modern Optics, 2014, 61, 1333-1338.	1.3	1
573	A tuneable, power efficient and narrow single longitudinal mode fibre ring laser using an inline dual-taper fibre Mach–Zehnder filter. Laser Physics, 2014, 24, 085111.	1.2	11
574	Multi-wavelength Brillouin Raman erbium-doped fiber laser generation in a linear cavity. Journal of Optics (United Kingdom), 2014, 16, 035203.	2.2	17
575	Regenerated Type-Ila Fibre Bragg Grating from a Ge–B codoped fibre via thermal activation. Optics and Laser Technology, 2014, 62, 69-72.	4.6	14
576	Electrostatic charge interaction: a case study on tapered PMMA fiber for calcium nitrate detection. Sensor Review, 2014, 34, 424-427.	1.8	1

#	Article	IF	Citations
577	Qâ€switched thuliumâ€doped fibre laser operating at 1900Ânm using multiâ€walled carbon nanotubes saturable absorber. Journal of Engineering, 2014, 2014, 297-301.	1.1	3
578	All-fibre dual-wavelength thulium-doped fibre laser based on spatial filtering effect. Ukrainian Journal of Physical Optics, 2014, 15, 79.	13.0	1
579	Dual-wavelength erbium-ytterbium co-doped fibre laser operating at 1064 and 1534 nm. Ukrainian Journal of Physical Optics, 2014, 15, 118.	13.0	5
580	Double-clad thulium/ytterbium co-doped octagonal-shaped fibre for fibre laser applications. Ukrainian Journal of Physical Optics, 2014, 15, 173.	13.0	4
581	Ring microfiber coupler erbium-doped fiber laser analysis. Chinese Optics Letters, 2014, 12, 021403-21406.	2.9	8
582	Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber. Chinese Optics Letters, 2014, 12, 031403-31406.	2.9	27
583	Dark pulse emission in nonlinear polarization rotation-based multiwavelength mode-locked erbium-doped fiber laser. Chinese Optics Letters, 2014, 12, 113202-113204.	2.9	18
584	Distributed feedback multimode Brillouinâ€"Raman random fiber laser in the S-band. Laser Physics Letters, 2013, 10, 055102.	1.4	33
585	Turning cigarette butt waste into an alternative control tool against an insecticide-resistant mosquito vector. Acta Tropica, 2013, 128, 584-590.	2.0	38
586	A Multi-Wavelength Brillouin Erbium Fiber Laser With Double Brillouin Frequency Spacing and Q-Switching Characteristics. IEEE Journal of Quantum Electronics, 2013, 49, 595-598.	1.9	9
587	Generation of efficient 20 GHz optical combs in a Brillouin-erbium fiber laser. Laser Physics, 2013, 23, 015103.	1.2	2
588	Extraction of a single Stokes line from a Brillouin fibre laser using a silicon oxynitride microring filter. Laser Physics, 2013, 23, 095102.	1.2	3
589	Instantaneous Response of Wide Area Intrusion Sensor With Long Haul Monitoring Capability. IEEE Photonics Technology Letters, 2013, 25, 2255-2258.	2.5	8
590	Allâ€Fiber Dualâ€Wavelength Thulium–Bismuth Codoped Fiber Laser. Microwave and Optical Technology Letters, 2013, 55, 2324-2326.	1.4	3
591	AQ-switched thulium-doped fiber laser with a graphene thin film based saturable absorber. Laser Physics, 2013, 23, 115102.	1.2	6
592	Ultra-narrow linewidth single longitudinal mode Brillouin fiber ring laser using highly nonlinear fiber. Laser Physics Letters, 2013, 10, 105105.	1.4	21
593	All-fiber graphene passively Q-switched nanosecond Thulium doped fiber laser at 1900 nm. , 2013, , .		О
594	Q-switched and soliton pulses generation based on carbon nanotubes saturable absorber. , 2013, , .		3

#	Article	IF	CITATIONS
595	Closely Spaced, Dualâ€SIm Fiber Laser for Microwave Generation With A Single Fbg. Microwave and Optical Technology Letters, 2013, 55, 2011-2015.	1.4	О
596	A Tm-Bi Co-Doped Fiber Laser with Dual Pumping Operation. Chinese Physics Letters, 2013, 30, 034204.	3.3	3
597	Comparison between the single and dual-pumping method of large mode area Yb ^{/Tm³⁺ co-doped air-clad fiber laser., 2013,,.}		0
598	A Polyaniline-Coated Integrated Microfiber Resonator for UV Detection. IEEE Sensors Journal, 2013, 13, 2020-2025.	4.7	9
599	A Passively Mode-Locked Erbium-Doped Fiber Laser Based on a Single-Wall Carbon Nanotube Polymer. Chinese Physics Letters, 2013, 30, 054210.	3.3	20
600	Graphene Oxide-Based Q -Switched Erbium-Doped Fiber Laser. Chinese Physics Letters, 2013, 30, 024208.	3.3	13
601	A $\langle i \rangle$ Q $\langle j i \rangle$ -switched multi-wavelength Brillouin erbium fiber laser with a single-walled carbon nanotube saturable absorber. Laser Physics, 2013, 23, 055101.	1.2	11
602	Thermal Regeneration in Etched-Core Fiber Bragg Grating. IEEE Sensors Journal, 2013, 13, 2581-2585.	4.7	15
603	Stability analysis in a soliton fiber ring laser with a hybrid saturable absorber. Microwave and Optical Technology Letters, 2013, 55, 164-170.	1.4	0
604	Demonstration of microfiber hybrid Mach–Zehnder and knot resonator structure. Microwave and Optical Technology Letters, 2013, 55, 100-102.	1.4	8
605	S + C + L Band tunable wavelength conversion using FWM dualâ€wavelength fiber laser in a highly nonlinear fiber. Microwave and Optical Technology Letters, 2013, 55, 379-382.	1.4	1
606	Effect of loop diameter on the performance of MKRâ€based dualâ€wavelength erbiumâ€doped fiber laser. Microwave and Optical Technology Letters, 2013, 55, 236-238.	1.4	4
607	Q-switched Zr-EDF laser using single-walled CNT/PEO polymer composite as a saturable absorber. Optical Materials, 2013, 35, 347-352.	3.6	7
608	Fiber optic salinity sensor using beam-through technique. Optik, 2013, 124, 679-681.	2.9	15
609	A <i>Q</i> -switched erbium-doped fiber laser with a graphene saturable absorber. Laser Physics Letters, 2013, 10, 025102.	1.4	51
610	Current sensor based on inline microfiber Mach–Zehnder interferometer. Sensors and Actuators A: Physical, 2013, 192, 9-12.	4.1	26
611	Non-adiabatic silica microfiber for strain and temperature sensors. Sensors and Actuators A: Physical, 2013, 192, 130-132.	4.1	39
612	Theoretical analysis and fabrication of tapered fiber. Optik, 2013, 124, 538-543.	2.9	83

#	Article	IF	CITATIONS
613	Effects of Yb/Tm Concentration and Pump Wavelength on the Performance of Ytterbium-Sensitized Thulium-Doped Fiber Laser. IEEE Journal of Quantum Electronics, 2013, 49, 95-99.	1.9	3
614	Compact Dual-Wavelength Laser Generation Using Highly Concentrated Erbium-Doped Fiber Loop Attached to Microfiber Coupler. IEEE Journal of Quantum Electronics, 2013, 49, 586-588.	1.9	7
615	Tunable graphene-based Q-switched erbium-doped fiber laser using fiber Bragg grating. Journal of Modern Optics, 2013, 60, 202-212.	1.3	28
616	Inline Microfiber Mach–Zehnder Interferometer for High Temperature Sensing. IEEE Sensors Journal, 2013, 13, 626-628.	4.7	41
617	Fiber optic displacement sensor for imaging of tooth surface roughness. Measurement: Journal of the International Measurement Confederation, 2013, 46, 546-551.	5.0	21
618	Detection of stain formation on teeth by oral antiseptic solution using fiber optic displacement sensor. Optics and Laser Technology, 2013, 45, 336-341.	4.6	5
619	Passively mode-locked erbium doped zirconia fiber laser using a nonlinear polarisation rotation technique. Optics and Laser Technology, 2013, 47, 22-25.	4.6	12
620	A new compact micro-ball lens structure at the cleaved tip of microfiber coupler for displacement sensing. Sensors and Actuators A: Physical, 2013, 189, 177-181.	4.1	18
621	Multi-wavelength Brillouin–Raman fiber laser generation assisted by multiple four-wave mixing processes in a ring cavity. Laser Physics, 2013, 23, 075108.	1.2	14
622	Self-Starting Harmonic Mode-Locked Thulium-Doped Fiber Laser with Carbon Nanotubes Saturable Absorber. Chinese Physics Letters, 2013, 30, 094204.	3.3	19
623	Wideband tunable Q-switched fiber laser using graphene as a saturable absorber. Journal of Modern Optics, 2013, 60, 1563-1568.	1.3	11
624	Narrow Spacing Dual-Wavelength Fiber Laser Based on Polarization Dependent Loss Control. IEEE Photonics Journal, 2013, 5, 1502706-1502706.	2.0	29
625	Investigation of Q-Switching Characteristics in Single- and Double-Spacing Multi-Wavelength Brillouin Erbium Fiber Laser. IEEE Photonics Journal, 2013, 5, 1400206-1400206.	2.0	2
626	Proposal and Performance Evaluation of an Efficient RZ-DQPSK Modulation Scheme in All-Optical OFDM Transmission Systems. Journal of Optical Communications and Networking, 2013, 5, 932.	4.8	14
627	Direct period measurement for fiber Bragg grating using an optical imaging technique. Applied Optics, 2013, 52, 5393.	1.8	7
628	S-band multiwavelength Brillouin/Raman distributed Bragg reflector fiber lasers. Applied Optics, 2013, 52, 3753.	1.8	8
629	Axial contraction in etched optical fiber due to internal stress reduction. Optics Express, 2013, 21, 2551.	3.4	25
630	Reflection spectra of etched FBGs under the influence of axial contraction and stress-induced index change. Optics Express, 2013, 21, 14808.	3.4	12

#	Article	IF	Citations
631	Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser. Applied Optics, 2013, 52, 818.	1.8	13
632	Spectral analysis of bent fiber Bragg gratings: theory and experiment. Optics Letters, 2013, 38, 4409.	3.3	19
633	High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser. , 2013, , .		1
634	1.9 μm lasing with Tm ³⁺ /Yb ³⁺ coâ€doped airâ€clad fiber and 931 nm pumping. Microwave and Optical Technology Letters, 2013, 55, 1124-1126.	1.4	0
635	Quantification of Mesenchymal Stem Cell Growth Rates through Secretory and Excretory Biomolecules in Conditioned Media via Fresnel Reflection. Sensors, 2013, 13, 13276-13288.	3.8	2
636	Temperature-Insensitive Bend Sensor Using Entirely Centered Erbium Doping in the Fiber Core. Sensors, 2013, 13, 9536-9546.	3.8	5
637	Demonstration of acoustic vibration sensor based on microfiber knot resonator. Microwave and Optical Technology Letters, 2013, 55, 1138-1141.	1.4	13
638	Mode-locked thulium–bismuth codoped fiber laser using graphene saturable absorber in ring cavity. Applied Optics, 2013, 52, 1226.	1.8	16
639	2.0- $\$$ muhbox $\{m\}$ \$ Q-Switched Thulium-Doped Fiber Laser With Graphene Oxide Saturable Absorber. IEEE Photonics Journal, 2013, 5, 1501108-1501108.	2.0	59
640	Nanosecond Pulse Generation Using the Stimulated Brillouin Scattering Effect in a Photonic Crystal Fiber. Chinese Physics Letters, 2013, 30, 114204.	3.3	4
641	Controllable stretched pulse and dissipative soliton emission using nonâ€linear polarisation rotation and cavity loss tuning mechanism. IET Optoelectronics, 2013, 7, 38-41.	3.3	0
642	Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor. Advances in Materials Science and Engineering, 2013, 2013, 1-4.	1.8	4
643	Tapered Plastic Optical Fiber Coated With HEC/PVDF for Measurement of Relative Humidity. IEEE Sensors Journal, 2013, 13, 4702-4705.	4.7	24
644	Tunable S-band output based on Raman shift in dispersion shifted fiber. Journal of Modern Optics, 2013, 60, 737-740.	1.3	2
645	Brillouin erbium fiber laser generation in a figure-of-eight configuration with double brillouin frequency spacing. , 2013, , .		1
646	Fiber Optic Displacement Sensor Using Multimode Plastic Fiber Probe and Tooth Surface. IEEE Sensors Journal, 2013, 13, 294-298.	4.7	11
647	Micro-Ball Lensed Fiber-Based Glucose Sensor. IEEE Sensors Journal, 2013, 13, 348-350.	4.7	30
648	S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs. Quantum Electronics, 2013, 43, 923-926.	1.0	1

#	Article	IF	Citations
649	Graphene-Based Mode-Locked Spectrum-Tunable Fiber Laser Using Mach–Zehnder Filter. IEEE Photonics Journal, 2013, 5, 1501709-1501709.	2.0	29
650	Self-starting harmonic mode-locked Tm-Bi co-doped germanate f iber laser with carbon nanotube-based saturable absorber. Chinese Optics Letters, 2013, 11, 063201-63203.	2.9	11
651	Q-switched pulse generation from an all-f iber distributed Bragg reflector laser using graphene as saturable absorber. Chinese Optics Letters, 2013, 11, 071401-71404.	2.9	8
652	Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region. Chinese Optics Letters, 2013, 11, 073201-73203.	2.9	14
653	Erbium-doped fibre ring laser based on microfibre coupler. Ukrainian Journal of Physical Optics, 2013, 14, 196.	13.0	0
654	Fiber optic displacement sensor using fiber coupler probe and real objects. Sensor Review, 2012, 32, 212-216.	1.8	3
655	DC current sensing capability of microfibre Mach-Zehnder interferometer. Electronics Letters, 2012, 48, 943.	1.0	8
656	OPTICAL AMPLIFIER WITH FLAT-GAIN AND WIDEBAND OPERATION UTILIZING HIGHLY CONCENTRATED ERBIUM-DOPED FIBERS. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250005.	1.8	3
657	Integrated Microfibre Device for Refractive Index and Temperature Sensing. Sensors, 2012, 12, 11782-11789.	3.8	61
658	Dual-wavelength laser generation using highly concentrated erbium-doped fibre coupling with microfibre knot resonator. Electronics Letters, 2012, 48, 278.	1.0	2
659	1880-nm Broadband ASE Generation With Bismuth–Thulium Codoped Fiber. IEEE Photonics Journal, 2012, 4, 2176-2181.	2.0	5
660	Four-wave mixing in zirconia-erbium doped fiber – a comparison between ring and linear cavities. Laser Physics Letters, 2012, 9, 819-825.	1.4	5
661	Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration. Quantum Electronics, 2012, 42, 241-243.	1.0	4
662	Thermal response of chalcogenide microsphere resonators. Quantum Electronics, 2012, 42, 462-464.	1.0	5
663	Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity. Journal of Biomedical Optics, 2012, 17, 071308.	2.6	4
664	Optical non-contact micrometer thickness measurement system for silica thick films. , 2012, , .		1
665	S-band multiwavelength ring Brillouin/Raman fiber laser with 20 GHz channel spacing. Applied Optics, 2012, 51, 1811.	1.8	39
666	Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber. Applied Optics, 2012, 51, 8621.	1.8	56

#	Article	lF	CITATIONS
667	Micro-bending based optical band-pass filter and its application in S-band Thulium-doped fiber amplifier. Optics Express, 2012, 20, 29784.	3.4	9
668	Fabrication and application of zirconia-erbium doped fibers. Optical Materials Express, 2012, 2, 1690.	3.0	15
669	Broadband amplifier and high performance tunable laser with an extinction ratio of higher than 60 dB using bismuth oxide-based erbium-doped fiber. Journal of Modern Optics, 2012, 59, 1106-1112.	1.3	2
670	Graphene nano-, micro- and macro-photonics. , 2012, , .		0
671	Wideband and flat-gain amplifier using high concentration Erbium doped fibers in series double-pass configuration., 2012,,.		1
672	Microfiber structures and its sensor and laser applications. , 2012, , .		1
673	Spreading profile of evaporative liquid drops in thin porous layer. Physical Review E, 2012, 85, 016314.	2.1	1
674	MICROFIBER STRUCTURES FOR SENSOR APPLICATIONS. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250003.	1.8	2
675	Comparison of linear and ring lasers of thulium-ytterbium co-doped fiber. , 2012, , .		1
676	Fiber optic displacement sensor for microâ€thickness measurement. Sensor Review, 2012, 32, 230-235.	1.8	7
677	Microfibre Mach–Zehnder interferometer and its application as a current sensor. IET Optoelectronics, 2012, 6, 298-302.	3.3	8
678	Fabrication and Characterization of a 2 \tilde{A} — 2 Microfiber Knot Resonator Coupler. Chinese Physics Letters, 2012, 29, 084204.	3.3	7
679	Comparison between Analytical Solution and Experimental Setup of a Short Long Ytterbium Doped Fiber Laser. Optics and Photonics Journal, 2012, 02, 65-72.	0.4	5
680	Erbium-Doped Fiber Laser With a Microfiber Coupled to Silica Microsphere. IEEE Photonics Journal, 2012, 4, 1065-1070.	2.0	3
681	Compact and Tunable Erbium-Doped Fiber Laser With Microfiber Mach–Zehnder Interferometer. IEEE Journal of Quantum Electronics, 2012, 48, 1165-1168.	1.9	11
682	Fano resonance on plasmonic nanostructures. , 2012, , .		4
683	Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier. Optical Materials, 2012, 35, 231-239.	3.6	3
684	Compact and wide-band bismuth-based erbium-doped fibre amplifier based on two-stage and double-pass approaches. IET Optoelectronics, 2012, 6, 127.	3.3	3

#	Article	IF	Citations
685	Wideband Spectrum-Sliced ASE Source Operating at 1900-nm Region Based on a Double-Clad Ytterbium-Sensitized Thulium-Doped Fiber. IEEE Photonics Journal, 2012, 4, 14-18.	2.0	19
686	S-band gain and noise figure improvements in thulium-doped fiber amplifier by using macro-bending approach. Applied Physics B: Lasers and Optics, 2012, 108, 807-813.	2.2	4
687	Theoretical and experimental studies on coupler based fiber optic displacement sensor with concave mirror. Optik, 2012, 123, 2105-2108.	2.9	4
688	Graphene-Oxide-Based Saturable Absorber for All-Fiber Q-Switching With a Simple Optical Deposition Technique. IEEE Photonics Journal, 2012, 4, 2205-2213.	2.0	34
689	Microfiber coupler devices., 2012,,.		0
690	Wideband spectrum-sliced ASE source operating at 2 micron region based on double clad ytterbium-sensitized thulium-doped fiber. , 2012, , .		0
691	Add-Drop Filter Based on Microfiber Mach–Zehnder/Sagnac Interferometer. IEEE Journal of Quantum Electronics, 2012, 48, 1411-1414.	1.9	11
692	Study of Dual-Wavelength Mode Competition in an Erbium-Doped Fiber Laser (EDFL) Produced by Acoustic Waves. IEEE Journal of Quantum Electronics, 2012, 48, 1499-1504.	1.9	9
693	A new fiber optic salinity sensing device based on beam-through technique. , 2012, , .		0
694	Tunable Laser in Ytterbium-Doped ${m Y}_{2}{m O}_{3}$ Nanoparticle Optical Fibers. IEEE Photonics Technology Letters, 2012, 24, 679-681.	2.5	5
695	Direct airborne acoustic wave modulation of Fabry–Perot fiber laser (FPFL) over 100ÂkHz of operating bandwidth. Applied Optics, 2012, 51, 2772.	1.8	7
696	Demonstration of DC current sensing through Microfiber Knot Resonator., 2012,,.		1
697	A Q-Switched Erbium-Doped Fiber Laser with a Carbon Nanotube Based Saturable Absorber. Chinese Physics Letters, 2012, 29, 114202.	3.3	67
698	Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches. Chinese Physics Letters, 2012, 29, 054216.	3.3	20
699	Analytical Model for Broadband Thulium-Bismuth-Doped Fiber Amplifier. IEEE Journal of Quantum Electronics, 2012, 48, 1052-1058.	1.9	13
700	Passively Q-Switched 11-Channel Stable Brillouin Erbium-Doped Fiber Laser With Graphene as the Saturable Absorber. IEEE Photonics Journal, 2012, 4, 2050-2056.	2.0	4
701	Dual-cavity dual-output multi-wavelength fiber laser based on nonlinear polarization rotation effect. Laser Physics, 2012, 22, 1601-1605.	1.2	1
702	Temperature Sensing Using Frequency Beating Technique From Single-Longitudinal Mode Fiber Laser. IEEE Sensors Journal, 2012, 12, 2496-2500.	4.7	21

#	Article	IF	Citations
703	Modeling and experimental analysis of wide-band flat-gain amplifier utilizing high concentration of EDFA. , 2012, , .		1
704	Thermally tunable microfiber knot resonator based erbium-doped fiber laser. Optics Communications, 2012, 285, 4684-4687.	2.1	5
705	Fabrication and characterization of a dual layer multiple refractive index benzocyclobutene polymer platform for integrated optical devices. Optical Materials, 2012, 34, 1735-1741.	3.6	4
706	Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium-doped fiber. Journal of Modern Optics, 2012, 59, 268-273.	1.3	15
707	Fiber-Optic Salinity Sensor Using Fiber-Optic Displacement Measurement With Flat and Concave Mirror. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1529-1533.	2.9	41
708	Fiber Optic Displacement Sensor for Temperature Measurement. IEEE Sensors Journal, 2012, 12, 1361-1364.	4.7	39
709	Upconversion luminescence in Tm ³⁺ /Yb ³⁺ co-doped double-clad silica fibers under 980 nm cladding pumping. Journal of Modern Optics, 2012, 59, 527-532.	1.3	11
710	New Design of a Thulium–Aluminum-Doped Fiber Amplifier Based on Macro-Bending Approach. Journal of Lightwave Technology, 2012, 30, 3263-3272.	4.6	12
711	Broad spectral sliced multiwavelength source with a mode locked fiber laser. Laser Physics, 2012, 22, 212-215.	1.2	3
712	Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference. Laser Physics, 2012, 22, 252-255.	1.2	7
713	Wideband and compact erbiumâ€doped fiber amplifier using parallel doubleâ€pass configuration. Microwave and Optical Technology Letters, 2012, 54, 629-631.	1.4	4
714	Generation of high power pulse of Biâ€EDF and octave spanning supercontinuum using highly nonlinear fiber. Microwave and Optical Technology Letters, 2012, 54, 983-987.	1.4	3
715	Passively modeâ€locked soliton fiber laser using a combination of saturable absorber and nonlinear polarization rotation technique. Microwave and Optical Technology Letters, 2012, 54, 1430-1432.	1.4	5
716	Investigation on threshold power of stimulated Brillouin scattering in photonic crystal fiber. Optik, 2012, 123, 1149-1152.	2.9	1
717	Synchronous tunable wavelength spacing dual-wavelength SOA fiber ring laser using Fiber Bragg grating pair in a hybrid tuning package. Optics Communications, 2012, 285, 1326-1330.	2.1	4
718	All fiber passively mode locked zirconium-based erbium-doped fiber laser. Optics and Laser Technology, 2012, 44, 534-537.	4.6	9
719	Microfiber Mach-Zehnder interferometer embedded in low index polymer. Optics and Laser Technology, 2012, 44, 1186-1189.	4.6	20
720	Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature. Optics and Laser Technology, 2012, 44, 821-824.	4.6	16

#	Article	IF	CITATIONS
721	Supercontinuum generation using a passive mode-locked stretched-pulse bismuth-based erbium-doped fiber laser. Optics and Laser Technology, 2012, 44, 741-743.	4.6	2
722	Transmission characteristic of multi-turn microfiber coil resonator. Optics and Laser Technology, 2012, 44, 1791-1795.	4.6	5
723	Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands. Optics and Laser Technology, 2012, 44, 2168-2174.	4.6	3
724	Tunable Radio Frequency Generation Using a Graphene-Based Single Longitudinal Mode Fiber Laser. Journal of Lightwave Technology, 2012, 30, 2097-2102.	4.6	8
725	Spacing-Switchable Multiwavelength Fiber Laser Based on Nonlinear Polarization Rotation and Brillouin Scattering in Photonic Crystal Fiber. IEEE Photonics Journal, 2012, 4, 34-38.	2.0	33
726	Graphene-Based Saturable Absorber for Single-Longitudinal-Mode Operation of Highly Doped Erbium-Doped Fiber Laser. IEEE Photonics Journal, 2012, 4, 467-475.	2.0	36
727	Electrically Tunable Microfiber Knot Resonator Based Erbium-Doped Fiber Laser. IEEE Journal of Quantum Electronics, 2012, 48, 443-446.	1.9	29
728	Enhancement of Brillouin Stokes generation in the S-band region using a combination S-band Depressed Cladding Erbium Doped Fiber and Semiconductor Optical Amplifier. Laser Physics, 2012, 22, 598-604.	1.2	1
729	Multi-wavelength Brillouin fiber laser generation using dual-pass approach. Laser Physics, 2012, 22, 584-587.	1.2	5
730	Tunable laser generation with erbium-doped microfiber knot resonator. Laser Physics, 2012, 22, 588-591.	1.2	14
731	Stable zirconia-erbium doped multiwavelength fiber laser by precise control of polarization states. Laser Physics, 2012, 22, 982-985.	1.2	3
732	Multi-wavelength fiber laser based on nonlinear polarization rotation in semiconductor optical amplifier and photonic crystal fiber. Laser Physics, 2012, 22, 1257-1259.	1.2	9
733	Effect of doped fiber length on the stretch pulses of a mode-locked erbium-doped fiber laser. Laser Physics, 2012, 22, 1240-1243.	1.2	4
734	Supercontinuum from Zr-EDF using Zr-EDF mode-locked fiber laser. Laser Physics Letters, 2012, 9, 44-49.	1.4	15
735	Fiber laser at 2 micron region using double-clad thulium/ytterbium co-doped yttria-alumino-silicate fiber. Laser Physics Letters, 2012, 9, 50-53.	1.4	12
736	Effect of transverse distribution profile of thulium on the performance of thulium-doped fibre amplifiers. Ukrainian Journal of Physical Optics, 2012, 13, 74.	13.0	11
737	High power dual-wavelength tunable fiber laser in linear and ring cavity configurations. Chinese Optics Letters, 2012, 10, 010603-10606.	2.9	5
738	Graphene-based Q-switched pulsed fiber laser in a linear configuration. Chinese Optics Letters, 2012, 10, 041405.	2.9	30

#	Article	IF	Citations
739	Ytterbium-sensitized thulium-doped f iber laser with a single-mode output operating at 1 900-nm region. Chinese Optics Letters, 2012, 10, 101401-101403.	2.9	9
740	An Efficient Photonic Crystal Fiber-Based Brillouin Erbium Fiber Laser Using a Fiber Bragg Grating for Multi-Wavelength Generation. Fiber and Integrated Optics, 2011, 30, 259-264.	2.5	2
741	Investigation of the effects of SOA locations in the linear cavity of an O-band Brillouin SOA fiber laser. Journal of Modern Optics, 2011, 58, 580-586.	1.3	4
742	Wavelength conversion based on FWM in a HNLF by using a tunable dual-wavelength erbium doped fibre laser source. Journal of Modern Optics, 2011, 58, 566-572.	1.3	5
743	Fabrication and characterization of optical microfiber structures., 2011,,.		2
744	Microfiber-based devices: Current sensor and tunable laser. , 2011, , .		O
745	Quantum coherence effects in a Raman amplifier. Journal of Modern Optics, 2011, 58, 11-13.	1.3	1
746	Note: Fabrication of tapered fibre tip using mechanical polishing method. Review of Scientific Instruments, 2011, 82, 086115.	1.3	14
747	Stable power multi-wavelength fibre laser based on four-wave mixing in a short length of highly non-linear fibre. Journal of Optics (United Kingdom), 2011, 13, 075401.	2.2	5
748	\$O\$-Band Bismuth-Doped Fiber Amplifier With Double-Pass Configuration. IEEE Photonics Technology Letters, 2011, 23, 1860-1862.	2.5	10
749	Resonance condition of a microfiber knot resonator immersed in liquids. Applied Optics, 2011, 50, 5912.	2.1	40
750	Photonic crystal fiber-based multi-wavelength Brillouin fiber laser with dual-pass amplification configuration. Chinese Optics Letters, 2011, 9, 021403-21405.	2.9	6
751	采用四波混频æ•̂应获å¾4—å‱°¢é•¿æŽºé"'å…‰çº‱¿€å…‰å™¨. Chinese Optics Letters, 2011, 9, 061407.	2.9	6
752	Theoretical and experimental studies on concave mirrorâ€based fiber optic displacement sensor. Sensor Review, 2011, 31, 65-69.	1.8	8
753	S-band multiwavelength Brillouin Raman Fiber Laser. Optics Communications, 2011, 284, 4971-4974.	2.1	13
754	Tapered plastic multimode fiber sensor for salinity detection. Sensors and Actuators A: Physical, 2011, 171, 219-222.	4.1	79
755	High output power, narrow linewidth Brillouin fibre laser master-oscillator/power-amplifier source. IET Optoelectronics, 2011, 5, 181-183.	3.3	4
756	Low-cost spectral tunable microfibre knot resonator. IET Optoelectronics, 2011, 5, 281.	3.3	7

#	Article	IF	Citations
757	Experimental and theoretical studies on ytterbium sensitized erbium-doped fiber amplifier. Optik, 2011, 122, 1783-1786.	2.9	7
758	Temperature sensor based on fluorescence measurement of Cerium Ytterbium doped fiber. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 312-314.	0.6	3
759	Compact fiber laser at L-band region using Erbium-doped Zirconia fiber. Laser Physics, 2011, 21, 176-179.	1.2	10
760	Operation of brillouin fiber laser in the O-band region as compared to that in the C-band region. Laser Physics, 2011, 21, 210-214.	1.2	4
761	Hybrid flat gain C-band optical amplifier with Zr-based erbium-doped fiber and semiconductor optical amplifier. Laser Physics, 2011, 21, 202-204.	1.2	18
762	Multi-wavelength Brillouin fiber laser using dual-cavity configuration. Laser Physics, 2011, 21, 205-209.	1.2	24
763	Micro-displacement sensor with multimode fused coupler and concave mirror. Laser Physics, 2011, 21, 729-732.	1.2	6
764	Tunable high power fiber laser using an AWG as the tuning element. Laser Physics, 2011, 21, 712-717.	1.2	12
765	Investigation of dispersion characteristic in tapered fiber. Laser Physics, 2011, 21, 945-947.	1.2	6
766	Stable mode-locked fiber laser using 49 cm long bismuth oxide based erbium doped fiber and slow saturable absorber. Laser Physics, 2011, 21, 913-918.	1.2	6
767	High gain S-band semiconductors optical amplifier with double-pass configuration. Laser Physics, 2011, 21, 1208-1211.	1.2	3
768	Supercontinuum generation in photonic crystal fiber using femtosecond pulses. Laser Physics, 2011, 21, 1215-1218.	1.2	7
769	Highly efficient short length Bismuth-based erbium-doped fiber amplifier. Laser Physics, 2011, 21, 1793-1796.	1.2	5
770	Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter. Laser Physics, 2011, 21, 1633-1637.	1.2	13
771	Numerical Modelling of C-Band Bismuth-Based Erbium Doped Amplifier. , 2011, , .		O
772	Flatly broadened supercontinuum generation in nonlinear fibers using a mode locked bismuth oxide based erbium doped fiber laser. Laser Physics Letters, 2011, 8, 369-375.	1.4	55
773	Mode-locked bismuth-based erbium-doped fiber laser with stable and clean femtosecond pulses output. Laser Physics Letters, 2011, 8, 449-452.	1.4	48
774	Wavelength conversion based on four-wave mixing in a highly nonlinear fiber in ring configuration. Laser Physics Letters, 2011, 8, 742-746.	1.4	5

#	Article	IF	CITATIONS
775	67 cm long bismuth-based erbium doped fiber amplifier with wideband operation. Laser Physics Letters, 2011, 8, 814-817.	1.4	9
776	Fabrication of microfiber loop resonatorâ€based comb filter. Microwave and Optical Technology Letters, 2011, 53, 1119-1121.	1.4	7
777	Investigation on stimulated Brillouin scattering effect in Photonic crystal fiber. Microwave and Optical Technology Letters, 2011, 53, 1450-1453.	1.4	5
778	Tunable microwave photonic frequencies generation based on stimulated Brillouin scattering operating in the Lâ€band region. Microwave and Optical Technology Letters, 2011, 53, 1710-1713.	1.4	1
779	Fiber optic chemical sensor using fiber coupler probe based on intensity modulation for alcohol detection. Microwave and Optical Technology Letters, 2011, 53, 1935-1938.	1.4	5
780	Environmentâ€independent liquid level sensing based on fiberâ€optic displacement sensors. Microwave and Optical Technology Letters, 2011, 53, 2451-2453.	1.4	12
781	Four-wave mixing in dual wavelength fiber laser utilizing SOA for wavelength conversion. Optik, 2011, 122, 754-757.	2.9	3
782	Flat and compact switchable dual wavelength output at 1060nm from ytterbium doped fiber laser with an AWG as a wavelength selector. Optics and Laser Technology, 2011, 43, 550-554.	4.6	10
783	0.16nm spaced multi-wavelength Brillouin fiber laser in a figure-of-eight configuration. Optics and Laser Technology, 2011, 43, 866-869.	4.6	61
784	Double-pass erbium-doped zirconia fiber amplifier for wide-band and flat-gain operations. Optics and Laser Technology, 2011, 43, 1279-1281.	4.6	13
785	Current sensor based on microfiber knot resonator. Sensors and Actuators A: Physical, 2011, 167, 60-62.	4.1	120
786	Non-membrane optical microphone based on longitudinal modes competition. Sensors and Actuators A: Physical, 2011, 168, 281-285.	4.1	10
787	Dual-wavelength tunable fibre laser with a 15-dBm peak power. Quantum Electronics, 2011, 41, 709-714.	1.0	0
788	An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration. Quantum Electronics, 2011, 41, 602-605.	1.0	1
789	Theoretical and experimental studies on liquid refractive index sensor based on bundle fiber. Sensor Review, 2011, 31, 173-177.	1.8	6
790	DUAL WAVELENGTH HIGH POWER DOUBLE-CLAD ERBIUM/YTTERBIUM-DOPED FIBER LASER. Journal of Nonlinear Optical Physics and Materials, 2011, 20, 443-451.	1.8	0
791	20 GHz Optical Combs Generation in Brillouin Fiber Laser with a Compact Ring Cavity. , 2011, , .		0
792	Fiber optical based parametric amplifier in a highly nonlinear fiber (HNLF) by using a ring configuration. Journal of Modern Optics, 2011, 58, 1065-1069.	1.3	3

#	Article	IF	CITATIONS
793	Fabrication of optical comb filter using tapered fiber based ring resonator. Proceedings of SPIE, 2010, ,	0.8	1
794	Comparisons of multi-wavelength oscillations using Sagnac loop mirror and Mach-Zehnder interferometer for ytterbium doped fiber lasers. Laser Physics, 2010, 20, 516-521.	1.2	23
795	Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser. Laser Physics, 2010, 20, 716-719.	1.2	60
796	Diode-pumped 1028 nm Ytterbium-doped fiber laser with near 90% slope efficiency. Laser Physics, 2010, 20, 656-660.	1.2	23
797	Estimation of metal surface roughness using fiber optic displacement sensor. Laser Physics, 2010, 20, 904-909.	1.2	18
798	Effect of tilting angles on the performance of reflective and transmitting types of fiber optic-based displacement sensors. Laser Physics, 2010, 20, 824-829.	1.2	5
799	FWM-based multi-wavelength erbium-doped fiber laser using Bi-EDF. Laser Physics, 2010, 20, 1414-1417.	1.2	30
800	Fabrication of tapered fiber based ring resonator. Laser Physics, 2010, 20, 1629-1631.	1.2	19
801	Highly efficient and high output power of erbium doped fiber laser in a linear cavity configuration. Laser Physics, 2010, 20, 1894-1898.	1.2	1
802	High output power Erbium-Ytterbium doped cladding pumped fiber amplifier. Laser Physics, 2010, 20, 1899-1901.	1.2	15
803	Performance comparison between plastic-based fiber bundle and multimode fused coupler as probes in displacement sensors. Laser Physics, 2010, 20, 1890-1893.	1.2	8
804	A simple linear cavity dual-wavelength fiber laser using AWG as wavelength selective mechanism. Laser Physics, 2010, 20, 2006-2010.	1.2	17
805	Investigation on stimulated Brillouin scattering characteristics in a highly doped Bismuth-based Erbium-doped fiber. Laser Physics, 2010, 20, 1973-1977.	1.2	5
806	Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror. Optics and Laser Technology, 2010, 42, 377-381.	4.6	25
807	Effect of using aqueous/alcohol solution during solution doping on the physical and chemical characteristics of pre-sintered silica soot and the resultant native glass species concentration. Materials Chemistry and Physics, 2010, 124, 1077-1082.	4.0	0
808	Theoretical and experimental study on the fiber optic displacement sensor with two receiving fibers. Microwave and Optical Technology Letters, 2010, 52, 373-375.	1.4	25
809	Displacement sensing with two asymmetrical inclined fibers. Microwave and Optical Technology Letters, 2010, 52, 1271-1274.	1.4	9
810	Multiple Brillouin Stokes generation with bismuthâ€based erbiumâ€doped fiber. Microwave and Optical Technology Letters, 2010, 52, 1416-1418.	1.4	3

#	Article	IF	Citations
811	Broadband ASE source using bismuth-based erbium-doped fibers in double-pass set-up. Microwave and Optical Technology Letters, 2010, 52, 1636-1638.	1.4	5
812	Effect of gain medium on the performance of Brillouin fiber laser. Microwave and Optical Technology Letters, 2010, 52, 2158-2160.	1.4	2
813	Brillouin fiber laser with a 49 cm long Bismuth-based erbium-doped fiber. Laser Physics Letters, 2010, 7, 60-62.	1.4	24
814	Novel O-band tunable fiber laser using an array waveguide grating. Laser Physics Letters, 2010, 7, 164-167.	1.4	19
815	Multi-wavelength fiber laser in the S-band region using a Sagnac loop mirror as a comb generator in an SOA gain medium. Laser Physics Letters, 2010, 7, 673-676.	1.4	60
816	Enhanced bundle fiber displacement sensor based on concave mirror. Sensors and Actuators A: Physical, 2010, 162, 8-12.	4.1	21
817	Selective area rare-earth doping of planar glass samples for monolithic integration of optically passive and active waveguides. Optik, 2010, 121, 722-725.	2.9	1
818	A theoretical study of double-pass thulium-doped fiber amplifiers. Optik, 2010, 121, 1257-1262.	2.9	4
819	120nm wide band switchable fiber laser. Optics Communications, 2010, 283, 4333-4337.	2.1	1
820	Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier. Optics and Laser Technology, 2010, 42, 790-793.	4.6	22
821	Multi-wavelength bismuth-based erbium-doped fiber laser based on four-wave mixing effect in photonic crystal fiber. Optics and Laser Technology, 2010, 42, 1250-1252.	4.6	32
822	WIDE-BAND HYBRID AMPLIFIER OPERATING IN S-BAND REGION. Progress in Electromagnetics Research, 2010, 102, 301-313.	4.4	31
823	SINGLE MODE ERBIUM YTTERBIUM-DOPED FIBER LASER WITH MULTIMODE PUMPING. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 203-208.	1.8	0
824	Semiconductor optical amplifier-based multi-wavelength ring laser utilizing photonic crystal fiber. Journal of Modern Optics, 2010, 57, 637-640.	1.3	8
825	O -BAND MULTI-WAVELENGTH FIBER LASER. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 229-236.	1.8	2
826	BRILLOUINâ€"RAMAN MULTI-WAVELENGTH LASER COMB GENERATION BASED ON Bi-EDF BY USING DUAL-WAVELENGTH IN DISPERSION COMPENSATING FIBER. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 123-130.	1.8	5
827	Efficient diode pumped ytterbium-doped fibre laser. Electronics Letters, 2010, 46, 68.	1.0	4
828	Effects of Pumping Scheme and Double-Propagation on the Performance of ASE Source using Dual-Stage Bismuth-Based Erbium-Doped Fiber. Journal of Electromagnetic Waves and Applications, 2010, 24, 373-381.	1.6	4

#	Article	IF	CITATIONS
829	O-band to C-band wavelength converter by using four-wave mixing effect in 1310 nm SOA. Journal of Modern Optics, 2010, 57, 2147-2153.	1.3	2
830	Dual wavelength erbium-doped fiber laser using a tapered fiber. Journal of Modern Optics, 2010, 57, 2111-2113.	1.3	21
831	Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers. Optics Letters, 2010, 35, 2882.	3.3	38
832	Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber. Journal of Lightwave Technology, 2010, 28, 2919-2924.	4.6	43
833	NUMERICAL MODELING OF EDFL AND BRILLOUIN ERBIUM FIBER LASER. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 281-293.	1.8	2
834	Investigation on the nonlinear parameters of a photonic crystal fiber by four-wave mixing. , 2010, , .		0
835	FIBER LOOP MIRROR FILTER WITH TWO-STAGE HIGH BIREFRINGENCE FIBERS. Progress in Electromagnetics Research C, 2009, 9, 101-108.	0.9	9
836	CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BASED FIBER LASER. Progress in Electromagnetics Research Letters, 2009, 9, 9-18.	0.7	4
837	L-BAND AMPLIFICATION AND MULTI-WAVELENGTH LASING WITH BISMUTH-BASED ERBIUM DOPED FIBER. Progress in Electromagnetics Research C, 2009, 6, 1-12.	0.9	9
838	OPTIMIZATION OF THE 1050nm PUMP POWER AND FIBER LENGTH IN SINGLE-PASS AND DOUBLE-PASS THULIUM DOPED FIBER AMPLIFIERS. Progress in Electromagnetics Research B, 2009, 14, 431-448.	1.0	16
839	Optimization of fiber length and bending Diameter in depressed cladding Erbium-doped Fiber Amplifier. , 2009, , .		2
840	THE COMPARISON NONLINEARITY BEHAVIORS OF PHOTONIC CRYSTAL FIBER BY TWO REDUCED LENGTHS OF BI-EDF IN RING CAVITY. Journal of Nonlinear Optical Physics and Materials, 2009, 18, 521-527.	1.8	4
841	Design and Operation of a Concentric-Fiber Displacement Sensor. Fiber and Integrated Optics, 2009, 28, 301-309.	2.5	8
842	Analytical and experimental studies on asymmetric bundle fiber displacement sensors. Journal of Modern Optics, 2009, 56, 1838-1842.	1.3	15
843	Multiwavelength source based on SOA and EDFA in a ringâ€cavity resonator. Microwave and Optical Technology Letters, 2009, 51, 110-113.	1.4	6
844	Lateral and axial displacements measurement using fiber optic sensor based on beamâ€through technique. Microwave and Optical Technology Letters, 2009, 51, 2038-2040.	1.4	14
845	Multiwavelength ytterbiumâ€doped fiber ring laser. Microwave and Optical Technology Letters, 2009, 51, 2511-2512.	1.4	13
846	High power and compact switchable bismuth based multiwavelength fiber laser. Laser Physics Letters, 2009, 6, 380-383.	1.4	58

#	Article	IF	CITATIONS
847	Multi-wavelength Brillouin fiber laser using a holey fiber and a bismuth-oxide based erbium-doped fiber. Laser Physics Letters, 2009, 6, 454-457.	1.4	52
848	The performance of double-clad ytterbium-doped fiber laser with different pumping wavelengths. Laser Physics Letters, 2009, 6, 458-460.	1.4	19
849	Switchable semiconductor optical fiber laser incorporating AWG and broadband FBG with high SMSR. Laser Physics Letters, 2009, 6, 539-543.	1.4	17
850	Double-clad erbium/ytterbium-doped fiber laser with a fiber Bragg grating. Laser Physics Letters, 2009, 6, 586-589.	1.4	22
851	Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier. Laser Physics Letters, 2009, 6, 737-739.	1.4	62
852	Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect. Laser Physics Letters, 2009, 6, 813-815.	1.4	59
853	Tunable dual wavelength fiber laser incorporating AWG and optical channel selector by controlling the cavity loss. Optics Communications, 2009, 282, 4771-4775.	2.1	63
854	Spreading profile of dopant solution on pre-sintered silica layers for selective area doping of integrated optic planar glass samples. Thin Solid Films, 2009, 518, 378-382.	1.8	2
855	Flat output and switchable fiber laser using AWG and broadband FBG. Optics Communications, 2009, 282, 2576-2579.	2.1	10
856	Multi-wavelength generation using a bismuth-based EDF and Brillouin effect in a linear cavity configuration. Optics and Laser Technology, 2009, 41, 198-201.	4.6	25
857	SOA-based multi-wavelength laser using fiber Bragg gratings. Laser Physics, 2009, 19, 1002-1005.	1.2	31
858	1028 nm single mode Ytterbium-doped fiber laser. Laser Physics, 2009, 19, 1021-1025.	1.2	11
859	Simple design of optical fiber displacement sensor using a multimode fiber coupler. Laser Physics, 2009, 19, 1446-1449.	1.2	21
860	17-channels S band multiwavelength Brillouin/Erbium Fiber Laser co-pump with Raman source. Laser Physics, 2009, 19, 2188-2193.	1.2	21
861	Compact Brillouin–erbium fiber laser. Optics Letters, 2009, 34, 46.	3.3	59
862	Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber. Optics Express, 2009, 17, 203.	3.4	15
863	Stopping and storing light pulses within a fiber optic ring resonator. Chinese Optics Letters, 2009, 7, 778-780.	2.9	3
864	Dual-Wavelength Erbium Fiber Laser in a Simple Ring Cavity. Fiber and Integrated Optics, 2009, 28, 430-439.	2.5	10

#	Article	IF	CITATIONS
865	Wide-band Bismuth based erbium doped fiber amplifier for DWDM applications. , 2009, , .		1
866	Enhancement of four wave mixing characteristic in Semiconductor Optical Amplifier using Fiber loop mirror., 2009,,.		0
867	An efficient double-pass Bismuth-based erbium-doped fiber amplifier. , 2009, , .		0
868	Dual wavelength fibre laser with tunable channel spacing using an SOA and dual AWGs. Journal of Modern Optics, 2009, 56, 1768-1773.	1.3	6
869	Compact Bi-EDF-Based Brillouin Erbium Fiber Laser Operating at the 1560-nm Region. IEEE Photonics Journal, 2009, 1, 254-258.	2.0	13
870	Wide-Band Bismuth-Based Erbium-Doped Fiber Amplifier With a Flat-Gain Characteristic. IEEE Photonics Journal, 2009, 1, 259-264.	2.0	40
871	High Sensitivity Fiber Bragg Grating Pressure Sensor Using Thin Metal Diaphragm. IEEE Sensors Journal, 2009, 9, 1654-1659.	4.7	39
872	Bismuth erbium-doped fiber based multi-wavelength laser assisted by four-wave mixing process. IEICE Electronics Express, 2009, 6, 40-43.	0.8	8
873	An Erbium -Ytterbium DFB laser with a simple and compact structure. Journal of Physics: Conference Series, 2009, 187, 012003.	0.4	0
874	BRILLOUIN FIBER LASER WITH SIGNIFICANTLY REDUCED GAIN MEDIUM LENGTH OPERATING IN L-BAND REGION. Progress in Electromagnetics Research Letters, 2009, 8, 143-149.	0.7	17
875	Highâ€sensitivity pressure sensor using a polymerâ€embedded FBG. Microwave and Optical Technology Letters, 2008, 50, 60-61.	1.4	38
876	Linear cavity Brillouin fiber laser using a fiber Bragg grating. Microwave and Optical Technology Letters, 2008, 50, 265-266.	1.4	5
877	Fiber-optic displacement sensor using a multimode bundle fiber. Microwave and Optical Technology Letters, 2008, 50, 661-663.	1.4	16
878	SOA based fiber ring laser with Fiber Bragg Grating. Microwave and Optical Technology Letters, 2008, 50, 3101-3103.	1.4	4
879	A new configuration of multi-wavelength Brillouin fiber laser. Laser Physics Letters, 2008, 5, 48-50.	1.4	56
880	The performance of a fiber optic displacement sensor for different types of probes and targets. Laser Physics Letters, 2008, 5, 55-58.	1.4	50
881	A linear cavity Brillouin fiber laser with multiple wavelengths output. Laser Physics Letters, 2008, 5, 361-363.	1.4	70
882	SOA-based quad-wavelength ring laser. Laser Physics Letters, 2008, 5, 726-729.	1.4	61

#	Article	IF	Citations
883	37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. Optics and Laser Technology, 2008, 40, 88-91.	4.6	19
884	Effects of an auxiliary pump on the performance of TDFA. Laser Physics, 2008, 18, 977-982.	1.2	7
885	A linear cavity brillouin/bismuth-based erbium-doped fiber laser with enhanced characteristics. Laser Physics, 2008, 18, 1344-1348.	1.2	10
886	High-power single-wavelength SOA-based fiber-ring laser with an optical modulator. Laser Physics, 2008, 18, 1349-1352.	1.2	9
887	Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach. Laser Physics, 2008, 18, 1362-1364.	1.2	15
888	Self-Calibrating Automated Characterization System for Depressed Cladding EDFA Applications Using LabVIEW Software With GPIB. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 2677-2681.	4.7	12
889	Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity. Journal of Optics, 2008, 10, 055101.	1.5	37
890	Bismuth-based Brillouin/erbium fiber laser. Journal of Modern Optics, 2008, 55, 1345-1351.	1.3	14
891	Linear cavity Brillouin fiber laser with improved characteristics. Optics Letters, 2008, 33, 770.	3 . 3	55
892	Effects of different Raman pumping schemes on stimulated Brillouin scattering in a linear cavity. Applied Optics, 2008, 47, 3088.	2.1	13
893	All-optical Gain-clamped Erbium-doped Fiber Amplifier with Narrowband Amplified Spontaneous Emission Feedback Technique. Journal of Optical Communications, 2008, 29, .	4.7	0
894	SOA-based multi-wavelength source. Journal of Modern Optics, 2008, 55, 2179-2185.	1.3	2
895	COMPACT AND EFFICIENT Er â€" Yb -DOPED FIBER AMPLIFIER. Journal of Nonlinear Optical Physics and Materials, 2008, 17, 193-198.	1.8	2
896	MULTIWAVELENGTH SOURCE USING A BRILLOUIN FIBER LASER. Journal of Nonlinear Optical Physics and Materials, 2008, 17, 199-203.	1.8	7
897	Brillouin fibre laser with 20â€m-long photonic crystal fibre. Electronics Letters, 2008, 44, 1065.	1.0	16
898	Shorter Wavelength Gain Shift In EDFA Using A Macro-Bending Approach., 2008,,.		2
899	Modeling of 980/1550nm PLC WDM directional coupler. , 2008, , .		2
900	Gain improvement in a dual-stage S-band EDFA by filtration of forward C-band ASE. Journal of Modern Optics, 2008, 55, 3035-3040.	1.3	4

#	Article	IF	Citations
901	SOA-Based Triple-Wavelength Ring Laser. The Open Applied Physics Journal, 2008, 1, 1-3.	2.0	4
902	An Enhanced Bismuth-Based Brillouin/Erbium Fiber Laser with Linear Cavity Configuration. Fiber and Integrated Optics, 2007, 27, 35-40.	2.5	4
903	Inductively coupled plasma of fluorocarbon plasma glass etching process on planar lightwave circuit device fabrication. , 2007, , .		O
904	Dynamic dispersing technique for PR coating process in planar lightwave circuit fabrication. Microwave and Optical Technology Letters, 2007, 49, 1993-1995.	1.4	1
905	Highly saturated EDFA for gain clamping operation. Microwave and Optical Technology Letters, 2007, 49, 1815-1816.	1.4	2
906	An efficient EYDFA with a 54 dB small signal gain. Microwave and Optical Technology Letters, 2007, 49, 2337-2339.	1.4	0
907	New Brillouin fiber laser configuration with high output power. Microwave and Optical Technology Letters, 2007, 49, 2656-2658.	1.4	9
908	An overview on S-band erbium-doped fiber amplifiers. Laser Physics Letters, 2007, 4, 10-15.	1.4	70
909	Multiwavelength Brillouin/Erbium-Ytterbium fiber laser. Laser Physics Letters, 2007, 4, 601-603.	1.4	71
910	Multiple wavelength Brillouin fiber laser from injection of intense signal light. Laser Physics Letters, 2007, 4, 678-680.	1.4	62
911	An efficient S-band brillouin erbium fiber laser with additional EDFA. Optics and Laser Technology, 2007, 39, 616-618.	4.6	3
912	Gain and noise figure improvements in double-pass S-band EDFA. Optics and Laser Technology, 2007, 39, 935-938.	4.6	9
913	A general weight function for inclined cracks at sharp V-notches. Engineering Fracture Mechanics, 2007, 74, 602-611.	4.3	22
914	Effects of output coupler reflectivity on the performance of a linear cavity Brillouin/erbium fiber laser. Pramana - Journal of Physics, 2007, 68, 451-456.	1.8	1
915	Self-excited brillouin–erbium fiber laser for DWDM applications. Optics and Laser Technology, 2007, 39, 94-97.	4.6	7
916	Characterization of lasing-oscillation direction in optical gain-clamped erbium-doped fiber amplifiers. Optics and Laser Technology, 2007, 39, 1020-1024.	4.6	4
917	Design and demonstration of direct UV-written small angle X couplers in silica-on-silicon for broadband operation. Applied Optics, 2006, 45, 6113.	2.1	8
918	Reflexões sobre a anticoncepção na adolescência no Brasil. Revista Brasileira De Saude Materno Infantil, 2006, 6, 135-140.	0.5	21

#	Article	IF	CITATIONS
919	Dual-stage Er/Yb doped fiber amplifier for gain and noise figure enhancements. IEICE Electronics Express, 2006, 3, 517-521.	0.8	15
920	Gain-clamping techniques in two-stage double-pass L-band EDFA. Pramana - Journal of Physics, 2006, 66, 539-545.	1.8	5
921	Single-mode pumping scheme for EDFA with high-power conversion efficiency using a 980-NM Ti:S laser. Microwave and Optical Technology Letters, 2006, 48, 71-74.	1.4	0
922	A linear cavity S-band Brillouin/Erbium fiber laser. Laser Physics Letters, 2006, 3, 369-371.	1.4	59
923	An efficient multiwavelength light source based on ASE slicing. Laser Physics Letters, 2006, 3, 495-497.	1.4	35
924	An efficient gain-flattened C-band Erbium-doped fiber amplifier. Laser Physics Letters, 2006, 3, 536-538.	1.4	57
925	S-BAND BRILLOUIN/ERBIUM FIBER LASER FOR DWDM APPLICATION. Journal of Nonlinear Optical Physics and Materials, 2006, 15, 309-313.	1.8	5
926	DOUBLE PASS S-BAND EDFA. Journal of Nonlinear Optical Physics and Materials, 2006, 15, 303-307.	1.8	0
927	An efficient S-band erbium-doped fiber amplifier using double-pass configuration. IEICE Electronics Express, 2005, 2, 182-185.	0.8	60
928	Gain control in S-band erbium-doped fiber amplifier using a fiber bragg grating. IEICE Electronics Express, 2005, 2, 186-191.	0.8	2
929	An enhanced S-band brillouin/erbium fiber laser with an additional EDFA in sub-loop. IEICE Electronics Express, 2005, 2, 321-326.	0.8	2
930	Gain-clamped double-pass S-band erbium-doped fiber amplifier. IEICE Electronics Express, 2005, 2, 595-599.	0.8	1
931	Gain enhancement in partial double-pass L-band EDFA system using a band-pass filter. Laser Physics Letters, 2005, 2, 36-38.	1.4	22
932	S-band erbium-doped fiber ring laser using a fiber Bragg grating. Laser Physics Letters, 2005, 2, 369-371.	1.4	51
933	Effect of doped-fiber's spooling on performance of S-band EDFA. Laser Physics Letters, 2005, 2, 412-414.	1.4	10
934	Narrowband ASE feedback gain-clamped EDFA characterization. Microwave and Optical Technology Letters, 2005, 44, 261-264.	1.4	0
935	Channel add/drop response in narrowband ASE feedback GC-EDFA. Microwave and Optical Technology Letters, 2005, 45, 307-309.	1.4	0
936	Two-stage S-band erbium-doped fiber amplifier using a depressed-cladding fiber. Microwave and Optical Technology Letters, 2005, 46, 92-94.	1.4	2

#	Article	IF	CITATIONS
937	A Partial Double-Pass S-Band Erbium-Doped Fibre Amplifier. Chinese Physics Letters, 2005, 22, 3080-3082.	3.3	3
938	S-band Brillouin erbium fibre laser. Electronics Letters, 2005, 41, 174.	1.0	51
939	Enhancement of Gain in L-Band Bismuth-Based Erbium-Doped Fibre Amplifier Using an Un-pumped EDF and Midway Isolator. Chinese Physics Letters, 2004, 21, 2452-2453.	3.3	0
940	Tunable and Low Noise Gain-Clamped Double-Pass L-Band Erbium-Doped Fiber Amplifier. Japanese Journal of Applied Physics, 2004, 43, L1075-L1077.	1.5	2
941	Gain Clamped Two-Stage Double-Pass L-Band EDFA with a Single Fibre Bragg Grating. Chinese Physics Letters, 2004, 21, 1954-1957.	3 . 3	3
942	Gain-Clamped Double-Pass L-Band Erbium-Doped Fiber Amplifier Using A Ring Laser and Fiber Bragg Grating. Japanese Journal of Applied Physics, 2004, 43, L924-L926.	1.5	2
943	Effect of Recycling a Backward Ase on Performance of Double Pass L-Band Edfa. Journal of Optics (India), 2004, 33, 181-186.	1.7	0
944	L-BAND EDFA WITH INJECTION OF C-BAND ASE. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 315-319.	1.8	0
945	Gain control in double-pass L-band EDFA using a ring resonator and two-stage configuration. Optik, 2004, 115, 525-527.	2.9	3
946	Gain clamping in double-pass L-band EDFA using a broadband FBG. Pramana - Journal of Physics, 2004, 62, 893-897.	1.8	0
947	Comparison of performances between partial double-pass and full double-pass systems in two-stage L-band EDFA. Laser Physics Letters, 2004, 1, 610-612.	1.4	27
948	Efficient and low-noise gain-flattened double-pass L-band erbium-doped fiber amplifier. Microwave and Optical Technology Letters, 2004, 40, 112-114.	1.4	3
949	L-band gain clamped erbium-doped fiber amplifier incorporating a C/L-band WDM coupler. Microwave and Optical Technology Letters, 2004, 40, 314-316.	1.4	1
950	Gain clamped double-pass L-band EDFA with incorporation of FBG at the input end of the optical amplifier. Microwave and Optical Technology Letters, 2004, 43, 166-168.	1.4	1
951	Gain clamping in double-pass L-band EDFA using a ring resonator. Microwave and Optical Technology Letters, 2004, 43, 484-486.	1.4	1
952	Low noise double pass L-band erbium-doped fiber amplifier. Optics and Laser Technology, 2004, 36, 245-248.	4.6	13
953	Partial gain-clamping in two-stage double-pass L-band EDFA using a ring resonator. , 2004, , .		2
954	Gain Clamping in Two-Stage>tex<\$L\$>/tex<-Band EDFA Using a Broadband FBG. IEEE Photonics Technology Letters, 2004, 16, 422-424.	2.5	20

#	Article	IF	CITATIONS
955	ASE Spectral Slice Gain-Clamping of EDFA. IEEE Photonics Technology Letters, 2004, 16, 2604-2606.	2.5	2
956	All-Optical Gain Clamped Double-Pass L-Band EDFA Based on Partial Reflection of ASE. IEICE Electronics Express, 2004, 1, 171-175.	0.8	1
957	An efficient and low noise Gain-Clamped Double-Pass L-Band EDFA. IEICE Electronics Express, 2004, 1, 98-102.	0.8	6
958	Effect of coupling ratio on performance of self-excited Brillouin/erbium fiber laser. IEICE Electronics Express, 2004, 1, 460-464.	0.8	0
959	High gain L-band erbium-doped fiber amplifier with two-stage double-pass configuration. Pramana - Journal of Physics, 2003, 61, 93-97.	1.8	2
960	10-GHz Optical Comb in L-Band Region With Brillouin/Erbium-Doped Fibre Laser. Optical Review, 2003, 10, 133-135.	2.0	0
961	Gain and noise performances of an L-band EDFA utilizing a ring laser cavity with fiber Bragg grating. Microwave and Optical Technology Letters, 2003, 36, 1-2.	1.4	1
962	Injection locking of an erbium-doped fiber laser-amplifier. Microwave and Optical Technology Letters, 2003, 36, 89-91.	1.4	0
963	Gain improvement in L-band EDFA using unpumped EDF in a double pass system. Microwave and Optical Technology Letters, 2003, 36, 154-156.	1.4	8
964	Gain clamped L-band EDFA using a fiber Bragg grating in two stage configuration. Microwave and Optical Technology Letters, 2003, 37, 265-266.	1.4	3
965	Gain-clamping in two-stage L-band EDFA using an unwanted backward ase from second stage. Optics and Laser Technology, 2003, 35, 441-444.	4.6	6
966	Gain-clamped two-stage L-band EDFA with a FBG laser in second stage. Optics and Laser Technology, 2003, 35, 645-647.	4.6	4
967	A nonsense mutation in exon 8 of the APC gene (Arg283Ter) causes clinically variable FAP in a Malaysian Chinese family. Cancer Science, 2003, 94, 725-728.	3.9	6
968	Effect of injection of C-band ASE on L-band erbium-doped fiber amplifier. JETP Letters, 2003, 77, 461-463.	1.4	3
969	Double-pass L-band EDFA with enhanced noise figure characteristics. IEEE Photonics Technology Letters, 2003, 15, 1055-1057.	2.5	64
970	Comparison of Performances Between Two-stage and Single-stage L-Band EDFA. Journal of Optical Communications, 2003, 24, .	4.7	0
971	L-band erbium-doped fibre amplifier with clamped- and flattened-gain using FBG. Electronics Letters, 2003, 39, 1238.	1.0	12
972	Dual-Stage L-Band Erbium-Doped Fiber Amplifier for Gain Enhancement. Japanese Journal of Applied Physics, 2003, 42, L173-L175.	1.5	5

#	Article	lF	CITATIONS
973	A New Gain-Clamped L-Band Erbium-Doped Fiber Amplifier with Highly Efficient Gain. Japanese Journal of Applied Physics, 2003, 42, L930-L931.	1.5	5
974	Gain-Clamped L-Band Erbium-Doped Fiber Amplifier with Co- and Counter-Propagating Lasers. Japanese Journal of Applied Physics, 2003, 42, L1262-L1264.	1.5	2
975	Gain and Noise Figure Improvements in Double Pass L-band EDFA using a Band-pass Filter. Journal of Optical Communications, 2002, 23, .	4.7	2
976	Multiwavelength Laser Comb in L-Band Region with Dual-Cavity Brillouin/Erbium Fiber Laser. Japanese Journal of Applied Physics, 2002, 41, L1234-L1236.	1.5	17
977	Highly Efficient L-Band Erbium-Doped Fiber Amplifier with Unpumped Erbium-Doped Fiber in Double Pass Configuration. Japanese Journal of Applied Physics, 2002, 41, L833-L835.	1.5	0
978	Unidirectional and Bidirectional Feedback Regenerative Erbium-Doped Fiber Amplifier. Japanese Journal of Applied Physics, 2002, 41, L960-L962.	1.5	2
979	Gain Control in L-Band Erbium-Doped Fiber Amplifier Using a Ring Resonator. Japanese Journal of Applied Physics, 2002, 41, L332-L333.	1.5	14
980	A Gain-Clamped L-Band Erbium-Doped Fiber Amplifier Using Ring Laser Cavity with a Fiber Bragg Grating. Japanese Journal of Applied Physics, 2002, 41, L836-L838.	1.5	7
981	Noise Characteristics of Erbium-Doped Fiber Amplifier with Optical Counter-Feedback. Japanese Journal of Applied Physics, 2002, 41, 2949-2950.	1.5	0
982	Gain Control in L-Band Erbium-Doped Fiber Amplifier Incorporating Broadband Fiber Bragg Grating. Japanese Journal of Applied Physics, 2002, 41, L1459-L1460.	1.5	0
983	Saturation Characteristics of Regenerative Erbium-Doped Fiber Amplifier. Japanese Journal of Applied Physics, 2002, 41, L830-L832.	1.5	2
984	Gain clamping in L-band erbium-doped fiber amplifier using a fiber Bragg grating. IEEE Photonics Technology Letters, 2002, 14, 293-295.	2.5	69
985	Gain enhancement in L-band EDFA through a double-pass technique. IEEE Photonics Technology Letters, 2002, 14, 296-297.	2.5	86
986	Comparison between regenerative-feedback and cofeedback gain-clamped EDFA. IEEE Photonics Technology Letters, 2002, 14, 1255-1257.	2.5	8
987	Gain enhancement inL-band EDFA using a fiber Bragg grating. Microwave and Optical Technology Letters, 2002, 32, 388-390.	1.4	1
988	Hybrid Brillouin/Erbium fibre laser operating at long wavelength band. Microwave and Optical Technology Letters, 2002, 33, 383-385.	1.4	0
989	A study of laser SNR in an erbium-doped fiber laser subject to external injection. Microwave and Optical Technology Letters, 2002, 35, 40-42.	1.4	0
990	Efficient multiwavelength generation of Brillouin/erbium fiber laser at 1600-nm region. Microwave and Optical Technology Letters, 2002, 35, 506-508.	1.4	13

#	Article	IF	Citations
991	Lasing wavelength dependence of gain-clamped EDFA performance with different optical feedback schemes. Optics and Laser Technology, 2002, 34, 497-500.	4.6	3
992	Noise characteristics of erbium-doped fibre amplifier with different optical feedback schemes. Optics Communications, 2002, 207, 327-331.	2.1	1
993	Regenerative erbium-doped fibre amplifier subject to external injection. Optics Communications, 2002, 209, 223-228.	2.1	0
994	A novel ASE self-pumping technique for gain-enhanced L-band erbium-doped fiberÂamplifiers. Optical Fiber Technology, 2002, 8, 146-152.	2.7	2
995	Gain Enhancement in Double-pass Erbium-doped Fiber Amplifier. , 2002, , .		1
996	Amplification bandwidth of below threshold regenerative erbium-doped fibre amplifiers. , 2002, , .		0
997	Double Pass L-Band EDFA with Unpumped EDF. , 2002, , .		1
998	Power Stabilization of Erbium-Doped Fibre Laser by External Injection., 2002,,.		0
999	Gain enhanced L-band Er/sup 3+/-doped fiber amplifier utilizing unwanted backward ASE. IEEE Photonics Technology Letters, 2001, 13, 1067-1069.	2.5	32
1000	Long-wavelength-band Er/sup 3+/-doped fiber amplifier incorporating a ring-laser as a seed signal generator. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 59-63.	2.9	10
1001	All-optical gain-clamped erbium-doped fiber-ring lasing amplifier with laser filtering technique. IEEE Photonics Technology Letters, 2001, 13, 785-787.	2.5	35
1002	Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. Journal of Power Sources, 2001, 97-98, 621-623.	7.8	116
1003	A novel design of bi-directional silica-based erbium-doped fibre amplifier for broadband WDM transmissions. Optics Communications, 2001, 187, 389-394.	2.1	4
1004	Low-noise and high-gain L-band EDFA utilising a novel self-generated signal-seeding technique. Optics Communications, 2001, 195, 241-248.	2.1	9
1005	Wavelength-tuning analysis of erbium-doped fiber-ring laser. Microwave and Optical Technology Letters, 2001, 29, 213-215.	1.4	1
1006	Gain-enhancedL-band EDFA employing a 1550 nm band ring laser. Microwave and Optical Technology Letters, 2001, 29, 282-284.	1.4	0
1007	Gain-clamped erbium-doped fiber amplifier using a single fiber Bragg grating. Microwave and Optical Technology Letters, 2001, 29, 290-293.	1.4	0
1008	Highly efficientL-band EDFA for DWDM systems employing a self-generated seed signal. Microwave and Optical Technology Letters, 2001, 30, 234-236.	1.4	2

#	Article	IF	CITATIONS
1009	Operating wavelength of erbium-doped fiber-ring laser. Microwave and Optical Technology Letters, 2001, 31, 105-107.	1.4	4
1010	Novel, gain-flattenedL-band EDFA with ASE utilization with >40 nm 3 dB bandwidth. Microwave and Optical Technology Letters, 2001, 28, 399-402.	1.4	4
1011	Effects of signal seeding on long-wavelength-band <inline-formula><math display="inline" overflow="scroll"><msup><mi>Er</mi><mi>3+</mi></msup></math></inline-formula> -doped fiber amplifiers. Optical Engineering, 2001, 40, 186.	1.0	2
1012	Properties of laser and amplified signal in a gain-clamped Er3+-doped fiber amplifier system. Microwave and Optical Technology Letters, 2000, 24, 418-420.	1.4	4
1013	Eight-channel WDM amplification in a gain-clamped fiber amplifier. Microwave and Optical Technology Letters, 2000, 25, 56-57.	1.4	O
1014	Study of mode selection in erbium-doped fiber ring laser cavity through a numerical approach. , 2000, 25, 187-191.		1
1015	Behavioral Investigations of an Erbium-Doped Fiber Ring Laser through Numerical Simulations. Optical Fiber Technology, 2000, 6, 155-163.	2.7	7
1016	Effects of Self-Saturation in an Erbium-Doped Fiber Amplifier. Optical Fiber Technology, 2000, 6, 265-274.	2.7	22
1017	Gain-flattened fiber amplifier from 1560 to 1580 nm wavelengths using an erbium-doped fiber amplifier. Microwave and Optical Technology Letters, 2000, 26, 221-223.	1.4	0
1018	A novel wideband erbium-doped fiber amplifier design. Microwave and Optical Technology Letters, 2000, 26, 268-269.	1.4	2
1019	Gain-clamped fibre amplifier using an ASE end reflector. Optics Communications, 2000, 177, 195-199.	2.1	6
1020	Long-wavelength EDFA gain enhancement through 1550 nm band signal injection. Optics Communications, 2000, 176, 125-129.	2.1	56
1021	Multiwavelength, bidirectional operation of twin-cavity Brillouin/erbium fiber laser. Optics Communications, 2000, 181, 135-139.	2.1	32
1022	A Novel Gain-Clamped Erbium Doped Fiber Amplifier for Wavelength Division Multiplexed Systems. Optical Review, 2000, 7, 294-296.	2.0	0
1023	MULTIWAVELENGTH GENERATION OF DUAL-CAVITY BRILLOUIN/ERBIUM FIBER LASERS. Journal of Nonlinear Optical Physics and Materials, 2000, 09, 235-241.	1.8	4
1024	Erbium-doped fiber ring laser cavity in transient and steady states studied by a numerical approach. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 914.	2.1	4
1025	Gain-clamped erbium-doped fibre amplifier for wavelength division multiplexed systems. Journal of Modern Optics, 2000, 47, 1599-1605.	1.3	1
1026	High-gain bidirectional Er/sup 3+/-doped fiber amplifier for conventional- and long-wavelength bands. IEEE Photonics Technology Letters, 2000, 12, 1468-1470.	2.5	14

#	Article	IF	CITATIONS
1027	Regenerative erbium-doped fibre ring laser-amplifier. Electronics Letters, 1999, 35, 1471.	1.0	7
1028	An injection-locked erbium-doped fibre ring laser. Optics and Laser Technology, 1999, 31, 493-496.	4.6	2
1029	Design optimisation of erbium-doped fibre ring laser through numerical simulation. Optics Communications, 1999, 170, 247-253.	2.1	12
1030	All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence. IEEE Photonics Technology Letters, 1999, 11, 1581-1583.	2.5	10
1031	Stokes signal saturation in tunable BEFL system. Electronics Letters, 1998, 34, 1751.	1.0	6
1032	Fractional photon model of three-photon mixing in the non-linear interaction process. Optics and Laser Technology, 1996, 28, 35-38.	4.6	6
1033	Self-mode-locking in a Q-switched Nd3+: doped silica fibre laser. Optics and Laser Technology, 1996, 28, 223-227.	4.6	4
1034	Chromium doped forsterite ring laser. Optics and Laser Technology, 1995, 27, 403-406.	4.6	5
1035	A simple model for the calculation of the walk-off angle in uniaxial crystal. Optics Communications, 1993, 104, 111-117.	2.1	2
1036	Performance characteristics of pulsed single-frequency tunable laser oscillators. Journal Physics D: Applied Physics, 1992, 25, 1687-1696.	2.8	3
1037	A simplified model for second-harmonic generation in uniaxial crystals: phase matching condition. Optics and Laser Technology, 1992, 24, 349-351.	4.6	0
1038	Pump wavelength's influence in erbium-doped fibre amplifier performance. , 0, , .		1
1039	Tapper ratio dependency of a low-cost passive OADM system. , 0, , .		1
1040	EYDFL giving higher efficiency and smaller power fluctuation as compared to EDFL., 0,,.		1
1041	Effects of scan angles in the far-field scanning method on the measurement of the mode field diameter. , 0 , , .		0
1042	Characterisation of cascaded EDFA with the inclusion of an interstage optical element., 0,,.		1
1043	Loss dependence on pull speed and pull delay of 3 dB fused tapered single mode fiber coupler., 0,,.		1
1044	Saturation parameters of erbium doped fibre amplifiers. , 0, , .		2

#	Article	IF	CITATIONS
1045	Cavity configuration study of an EDFL system. , 0, , .		0
1046	L-band Er/sup 3+/-doped fiber amplifier utilizing self-generated seed signal., 0, , .		0
1047	Simultaneous bi-directional of C- and L-band erbium doped fiber amplifier. , 0, , .		2
1048	Gain and noise properties of self-saturated erbium doped fiber amplifiers. , 0, , .		0
1049	Dual-cavity Brillouin/erbium fiber laser for DWDM. , 0, , .		3
1050	Gain-clamping fiber amplifier using double-pass superfluorescent laser., 0,,.		0
1051	Influence of the cavity loss on the tunability of a multiwavelength EDF laser. , 0, , .		1
1052	Multiwavelength Brillouin erbium fiber laser pumped from FBG fiber laser sharing the same EDF. , 0, , .		0
1053	Gain flattening and clamping in L-band ring EDFA incorporating fiber Bragg grating., 0,,.		1
1054	Uni- and bi-directional feedbacks regenerative EDFA operating below threshold. , 0, , .		0
1055	Double pass L-band EDFA incorporating band pass filter. , 0, , .		2
1056	Double pass L-band EDFA with an improved gain coefficient. , 0, , .		0
1057	Gain clamping in dual-stage L-band EDFA by recycling a backward ASE. , 0, , .		0
1058	Two-stage L-band erbium doped fiber amplifier., 0,,.		0
1059	Gain clamping in double-pass L-band EDFA., 0, , .		1
1060	ASE feedback gain-clamping of C-band EDFA. , 0, , .		0
1061	Double-pass L-band EDFA with flat-gain and improved noise figure characteristic. , 0, , .		1
1062	Small-angle (< 5>sup<0>/sup<) Direct-UV-written Crossed-waveguides on Silica-on silicon with Potential for Power Switching Applications., 0, , .		0

#	Article	IF	CITATIONS
1063	A compact O-plus C-band switchable quad-wavelength fiber laser using arrayed waveguide grating. Laser Physics Letters, 0, 7, 597-602.	1.4	17
1064	Microfiber loop resonator based temperature sensor. Journal of the European Optical Society-Rapid Publications, $0, 6, .$	1.9	44
1065	Four-Wave-Mixing in Zirconia-Yttria-Aluminum Erbium Codoped Silica Fiber. Journal of the European Optical Society-Rapid Publications, 0, 7, .	1.9	7
1066	Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser. Journal of the European Optical Society-Rapid Publications, 0, 8, .	1.9	11
1067	Dual wavelength single longitudinal mode Ytterbium-doped fiber laser using a dual-tapered Mach-Zehnder interferometer. Journal of the European Optical Society-Rapid Publications, 0, 10, .	1.9	9
1068	Flat-gain wide-band erbium doped fiber amplifier by combining two difference doped fibers. Journal of the European Optical Society-Rapid Publications, $0,10,10$	1.9	5
1069	Passive Q-switched and Mode-locked Fiber Lasers Using Carbon-based Saturable Absorbers. , 0, , .		7
1070	Isolator-free, widely tunable thulium/holmium fiber laser. Malaysian Journal of Fundamental and Applied Sciences, 0, 14, 439-442.	0.8	1
1071	Photonâ€toâ€photon polarization modulation using Mxene thin film as modulator. Electronics Letters, 0,	1.0	1
1072	Tungsten disulfide coated sideâ€polished fibre as polarisation state modulator in allâ€optical system. IET Optoelectronics, 0, , .	3.3	1