James A Yorke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988406/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling chaos. Physical Review Letters, 1990, 64, 1196-1199.	7.8	5,062
2	Embedology. Journal of Statistical Physics, 1991, 65, 579-616.	1.2	1,895
3	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
4	Period Three Implies Chaos. American Mathematical Monthly, 1975, 82, 985-992.	0.3	1,877
5	The MaSuRCA genome assembler. Bioinformatics, 2013, 29, 2669-2677.	4.1	1,127
6	Crises, sudden changes in chaotic attractors, and transient chaos. Physica D: Nonlinear Phenomena, 1983, 7, 181-200.	2.8	1,073
7	The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533, 200-205.	27.8	1,021
8	Using small perturbations to control chaos. Nature, 1993, 363, 411-417.	27.8	806
9	The dimension of chaotic attractors. Physica D: Nonlinear Phenomena, 1983, 7, 153-180.	2.8	802
10	Chaotic Attractors in Crisis. Physical Review Letters, 1982, 48, 1507-1510.	7.8	708
11	Period Three Implies Chaos. , 2004, , 77-84.		684
12	GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Research, 2012, 22, 557-567.	5.5	597
13	A deterministic model for gonorrhea in a nonhomogeneous population. Mathematical Biosciences, 1976, 28, 221-236.	1.9	581
14	On the existence of invariant measures for piecewise monotonic transformations. Transactions of the American Mathematical Society, 1973, 186, 481-481.	0.9	542
15	Critical exponents for crisis-induced intermittency. Physical Review A, 1987, 36, 5365-5380.	2.5	499
16	Strange attractors that are not chaotic. Physica D: Nonlinear Phenomena, 1984, 13, 261-268.	2.8	486
17	Fractal basin boundaries. Physica D: Nonlinear Phenomena, 1985, 17, 125-153.	2.8	472
18	The liapunov dimension of strange attractors. Journal of Differential Equations, 1983, 49, 185-207.	2.2	436

#	Article	IF	CITATIONS
19	Border-collision bifurcations including "period two to period three―for piecewise smooth systems. Physica D: Nonlinear Phenomena, 1992, 57, 39-57.	2.8	421
20	Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics, 1984, , .	0.3	404
21	RECURRENT OUTBREAKS OF MEASLES, CHICKENPOX AND MUMPS. American Journal of Epidemiology, 1973, 98, 453-468.	3.4	390
22	Hybrid assembly of the large and highly repetitive genome of <i>Aegilops tauschii</i> , a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Research, 2017, 27, 787-792.	5.5	382
23	RIDDLED BASINS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1992, 02, 795-813.	1.7	376
24	A local ensemble Kalman filter for atmospheric data assimilation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2004, 56, 415-428.	1.7	366
25	Using chaos to direct trajectories to targets. Physical Review Letters, 1990, 65, 3215-3218.	7.8	353
26	Final state sensitivity: An obstruction to predictability. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 99, 415-418.	2.1	349
27	Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology, 2010, 8, e1000475.	5.6	348
28	A local ensemble Kalman filter for atmospheric data assimilation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 56, 415.	1.7	332
29	Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model. Journal of Statistical Physics, 1979, 21, 263-277.	1.2	303
30	Finding zeroes of maps: homotopy methods that are constructive with probability one. Mathematics of Computation, 1978, 32, 887-899.	2.1	300
31	Unstable periodic orbits and the dimensions of multifractal chaotic attractors. Physical Review A, 1988, 37, 1711-1724.	2.5	298
32	Sequencing and Assembly of the 22-Gb Loblolly Pine Genome. Genetics, 2014, 196, 875-890.	2.9	286
33	Prevalence: a translation-invariant "almost every―on infinite-dimensional spaces. Bulletin of the American Mathematical Society, 1992, 27, 217-238.	1.5	285
34	Fractal Basin Boundaries, Long-Lived Chaotic Transients, and Unstable-Unstable Pair Bifurcation. Physical Review Letters, 1983, 50, 935-938.	7.8	279
35	Preturbulence: A regime observed in a fluid flow model of Lorenz. Communications in Mathematical Physics, 1979, 67, 93-108.	2.2	269
36	Draft genome of the globally widespread and invasive Argentine ant (<i>Linepithema humile</i>). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5673-5678.	7.1	257

#	Article	IF	CITATIONS
37	BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1995, 05, 189-207.	1.7	252
38	Critical Exponent of Chaotic Transients in Nonlinear Dynamical Systems. Physical Review Letters, 1986, 57, 1284-1287.	7.8	250
39	Edge of Chaos in a Parallel Shear Flow. Physical Review Letters, 2006, 96, 174101.	7.8	243
40	Border-collision bifurcations: An explanation for observed bifurcation phenomena. Physical Review E, 1994, 49, 1073-1076.	2.1	240
41	Robust Chaos. Physical Review Letters, 1998, 80, 3049-3052.	7.8	240
42	Some equations modelling growth processes and gonorrhea epidemics. Mathematical Biosciences, 1973, 16, 75-101.	1.9	215
43	Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. Physical Review Letters, 1990, 65, 1527-1530.	7.8	210
44	Unique Features of the Loblolly Pine (<i>Pinus taeda</i> L.) Megagenome Revealed Through Sequence Annotation. Genetics, 2014, 196, 891-909.	2.9	207
45	Do numerical orbits of chaotic dynamical processes represent true orbits?. Journal of Complexity, 1987, 3, 136-145.	1.3	205
46	Ergodic transformations from an interval into itself. Transactions of the American Mathematical Society, 1978, 235, 183-183.	0.9	203
47	Ordinary differential equations which yield periodic solutions of differential delay equations. Journal of Mathematical Analysis and Applications, 1974, 48, 317-324.	1.0	181
48	SEASONALITY AND THE REQUIREMENTS FOR PERPETUATION AND ERADICATION OF VIRUSES IN POPULATIONS. American Journal of Epidemiology, 1979, 109, 103-123.	3.4	180
49	Riddling Bifurcation in Chaotic Dynamical Systems. Physical Review Letters, 1996, 77, 55-58.	7.8	179
50	RECURRENT OUTBREAKS OF MEASLES, CHICKENPOX AND MUMPS. American Journal of Epidemiology, 1973, 98, 469-482.	3.4	175
51	Controlling chaos in high dimensional systems. Physical Review Letters, 1992, 69, 3479-3482.	7.8	174
52	Differentiable generalized synchronization of chaos. Physical Review E, 1997, 55, 4029-4034.	2.1	172
53	Estimating correlation dimension from a chaotic time series: when does plateau onset occur?. Physica D: Nonlinear Phenomena, 1993, 69, 404-424.	2.8	170
54	Sequence of the Sugar Pine Megagenome. Genetics, 2016, 204, 1613-1626.	2.9	169

#	Article	IF	CITATIONS
55	A procedure for finding numerical trajectories on chaotic saddles. Physica D: Nonlinear Phenomena, 1989, 36, 137-156.	2.8	160
56	Antimonotonicity: inevitable reversals of period-doubling cascades. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 162, 249-254.	2.1	158
57	Local Low Dimensionality of Atmospheric Dynamics. Physical Review Letters, 2001, 86, 5878-5881.	7.8	155
58	Chaos in a double pendulum. American Journal of Physics, 1992, 60, 491-499.	0.7	154
59	Obstructions to Shadowing When a Lyapunov Exponent Fluctuates about Zero. Physical Review Letters, 1994, 73, 1927-1930.	7.8	149
60	Noise reduction in dynamical systems. Physical Review A, 1988, 38, 1649-1652.	2.5	148
61	Noise reduction: Finding the simplest dynamical system consistent with the data. Physica D: Nonlinear Phenomena, 1990, 41, 183-196.	2.8	147
62	A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, 60, 113-130.	1.7	146
63	The homotopy continuation method: numerically implementable topological procedures. Transactions of the American Mathematical Society, 1978, 242, 271-284.	0.9	145
64	Basins of Wada. Physica D: Nonlinear Phenomena, 1991, 51, 213-225.	2.8	145
65	Numerical orbits of chaotic processes represent true orbits. Bulletin of the American Mathematical Society, 1988, 19, 465-469.	1.5	143
66	Scaling behavior of chaotic systems with riddled basins. Physical Review Letters, 1993, 71, 4134-4137.	7.8	143
67	How Long Do Numerical Chaotic Solutions Remain Valid?. Physical Review Letters, 1997, 79, 59-62.	7.8	143
68	Map with more than 100 coexisting low-period periodic attractors. Physical Review E, 1996, 54, 71-81.	2.1	142
69	Topological horseshoes. Transactions of the American Mathematical Society, 2001, 353, 2513-2530.	0.9	138
70	Using the sensitive dependence of chaos (the â€~â€~butterfly effect'') to direct trajectories in an experimental chaotic system. Physical Review Letters, 1992, 68, 2863-2866.	7.8	136
71	Asymptotic stability for one dimensional differential-delay equations. Journal of Differential Equations, 1970, 7, 189-202.	2.2	134
72	Metamorphoses of Basin Boundaries in Nonlinear Dynamical Systems. Physical Review Letters, 1986, 56, 1011-1014.	7.8	134

#	Article	IF	CITATIONS
73	Expanding maps on sets which are almost invariant. Decay and chaos. Transactions of the American Mathematical Society, 1979, 252, 351-366.	0.9	130
74	Global Bifurcations of Periodic Orbits. American Journal of Mathematics, 1978, 100, 263.	1.1	129
75	On the Stability of a Periodic Solution of a Differential Delay Equation. SIAM Journal on Mathematical Analysis, 1975, 6, 268-282.	1.9	104
76	The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 2017, 7, 3157-3167.	1.8	103
77	Multi-dimensioned intertwined basin boundaries: Basin structure of the kicked double rotor. Physica D: Nonlinear Phenomena, 1987, 25, 347-360.	2.8	101
78	Attractors on an N-torus: Quasiperiodicity versus chaos. Physica D: Nonlinear Phenomena, 1985, 15, 354-373.	2.8	98
79	The Lyapunov dimension of a nowhere differentiable attracting torus. Ergodic Theory and Dynamical Systems, 1984, 4, 261-281.	0.6	96
80	HOW MANY DELAY COORDINATES DO YOU NEED?. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1993, 03, 737-744.	1.7	95
81	Unstable dimension variability: A source of nonhyperbolicity in chaotic systems. Physica D: Nonlinear Phenomena, 1997, 109, 81-90.	2.8	95
82	Invariance for ordinary differential equations. Mathematical Systems Theory, 1967, 1, 353-372.	0.5	93
83	From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space. Physical Review Letters, 1997, 78, 4561-4564.	7.8	90
84	Super persistent chaotic transients. Ergodic Theory and Dynamical Systems, 1985, 5, 341-372.	0.6	89
85	Topology in chaotic scattering. Nature, 1999, 399, 315-316.	27.8	79
86	The generic property of existence of solutions of differential equations in Banach space. Journal of Differential Equations, 1973, 13, 1-12.	2.2	74
87	Perturbation theorems for ordinary differential equations. Journal of Differential Equations, 1967, 3, 15-30.	2.2	73
88	Unstable periodic orbits and the dimension of chaotic attractors. Physical Review A, 1987, 36, 3522-3524.	2.5	72
89	An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. GigaScience, 2017, 6, 1-4.	6.4	71
90	QuorUM: An Error Corrector for Illumina Reads. PLoS ONE, 2015, 10, e0130821.	2.5	71

#	Article	IF	CITATIONS
91	Explosions of chaotic sets. Physica D: Nonlinear Phenomena, 2000, 144, 44-61.	2.8	67
92	Prevalence. Bulletin of the American Mathematical Society, 2005, 42, 263-291.	1.5	67
93	Some New Results and Problems in the Theory of Differential-Delay Equations. SIAM Review, 1971, 13, 55-80.	9.5	65
94	Dynamics: Numerical Explorations. Applied Mathematical Sciences (Switzerland), 1994, , .	0.8	62
95	Multiple coexisting attractors, Basin boundaries and basic sets. Physica D: Nonlinear Phenomena, 1988, 32, 296-305.	2.8	58
96	Perturbing uniform asymptotically stable nonlinear systems. Journal of Differential Equations, 1969, 6, 452-483.	2.2	57
97	Saddle-Node Bifurcations on Fractal Basin Boundaries. Physical Review Letters, 1995, 75, 2482-2485.	7.8	56
98	Background and Basic Concepts. Lecture Notes in Biomathematics, 1984, , 1-17.	0.3	54
99	The implicit function theorem and the global methods of cohomology. Journal of Functional Analysis, 1976, 21, 330-339.	1.4	53
100	Antimonotonicity: Concurrent Creation and Annihilation of Periodic Orbits. Annals of Mathematics, 1992, 136, 219.	4.2	53
101	A Chaos Lemma. American Mathematical Monthly, 2001, 108, 411.	0.3	51
102	Assessing a local ensemble Kalman filter: perfect model experiments with the National Centers for Environmental Prediction global model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 528-545.	1.7	50
103	Assessing a local ensemble Kalman filter: perfect model experiments with the National Centers for Environmental Prediction global model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 528-545.	1.7	48
104	Stagger-and-Step Method: Detecting and Computing Chaotic Saddles in Higher Dimensions. Physical Review Letters, 2001, 86, 2261-2264.	7.8	46
105	On asymptotically autonomous differential equations. Mathematical Systems Theory, 1967, 1, 175-182.	0.5	43
106	Period doubling cascades of attractors: A prerequisite for horseshoes. Communications in Mathematical Physics, 1985, 101, 305-321.	2.2	43
107	Period-doubling cascades galore. Ergodic Theory and Dynamical Systems, 2011, 31, 1249-1267.	0.6	42
108	Prevalence. An addendum to: "Prevalence: a translation-invariant â€~almost every' on infinite-dimensional spaces―[Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217–238; MR1161274 (93k:28018)]. Bulletin of the American Mathematical Society, 1993, 28, 306-307.	1.5	41

#	Article	IF	CITATIONS
109	When Lyapunov exponents fail to exist. Physical Review E, 2008, 78, 056203.	2.1	39
110	Fractal dimensions of chaotic saddles of dynamical systems. Physical Review E, 1996, 54, 4819-4823.	2.1	38
111	A scaling law: How an attractor's volume depends on noise level. Physica D: Nonlinear Phenomena, 1985, 16, 62-78.	2.8	36
112	Spurious Lyapunov Exponents in Attractor Reconstruction. Physical Review Letters, 1998, 81, 4341-4344.	7.8	35
113	Structure and crises of fractal basin boundaries. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 107, 51-54.	2.1	33
114	An open set of maps for which every point is absolutely nonshadowable. Proceedings of the American Mathematical Society, 1999, 128, 909-918.	0.8	32
115	Multi-dimensioned intertwined basin boundaries and the kicked double rotor. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 118, 448-452.	2.1	31
116	Lorenz-like chaos in a partial differential equation for a heated fluid loop. Physica D: Nonlinear Phenomena, 1987, 24, 279-291.	2.8	31
117	Indecomposable Continua and the Characterization of Strange Sets in Nonlinear Dynamics. Physical Review Letters, 1997, 78, 1892-1895.	7.8	30
118	Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders. Chaos, 1997, 7, 125-138.	2.5	30
119	Differential inequalities and non-lipschitz scalar functions. Mathematical Systems Theory, 1970, 4, 140-153.	0.5	29
120	Metamorphoses: Sudden jumps in basin boundaries. Communications in Mathematical Physics, 1991, 141, 1-8.	2.2	27
121	Accessible saddles on fractal basin boundaries. Ergodic Theory and Dynamical Systems, 1992, 12, 377-400.	0.6	27

122

#	Article	IF	CITATIONS
127	On the Fundamental Theory of Differential Equations. SIAM Review, 1969, 11, 236-246.	9.5	22
128	Reconstructing the Jacobian from Data with Observational Noise. Physical Review Letters, 1999, 83, 1331-1334.	7.8	22
129	Partial control of chaotic systems. Physical Review E, 2008, 77, 055201.	2.1	22
130	Lyapunov theory and perturbation of stable and asymptotically stable systems. Journal of Differential Equations, 1974, 15, 308-321.	2.2	21
131	A Simple Reliable Numerical Algorithm for Following Homotopy Paths. , 1980, , 73-91.		21
132	The equality of fractal dimension and uncertainty dimension for certain dynamical systems. Communications in Mathematical Physics, 1992, 150, 1-21.	2.2	19
133	Learning about Reality from Observation. SIAM Journal on Applied Dynamical Systems, 2003, 2, 297-322.	1.6	19
134	The Many Facets of Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530011.	1.7	19
135	Families of periodic orbits: Virtual periods and global continuability. Journal of Differential Equations, 1984, 55, 59-71.	2.2	18
136	Partially controlling transient chaos in the Lorenz equations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160211.	3.4	18
137	Quantitative quasiperiodicity. Nonlinearity, 2017, 30, 4111-4140.	1.4	18
138	Low-dimensional paradigms for high-dimensional hetero-chaos. Chaos, 2018, 28, 103110.	2.5	18
139	The structure of basins of attraction and their trapping regions. Ergodic Theory and Dynamical Systems, 1997, 17, 463-481.	0.6	17
140	Dynamics of circular oscillator arrays subjected to noise. Nonlinear Dynamics, 2022, 108, 1-14.	5.2	17
141	The Dimension of Chaotic Attractors. , 1983, , 142-169.		16
142	Perturbing Uniformly Stable Linear Systems with and without Attraction. SIAM Journal on Applied Mathematics, 1969, 17, 725-738.	1.8	15
143	Duplication count distributions in DNA sequences. Physical Review E, 2008, 78, 061912.	2.1	14
144	When the Best Pandemic Models are the Simplest. Biology, 2020, 9, 353.	2.8	13

#	Article	IF	CITATIONS
145	EQUATIONS MODELLING POPULATION GROWTH, ECONOMIC GROWTH, AND GONORRHEA EPIDEMIOLOGY. , 1972, , 35-53.		12
146	Another Proof of the Liapunov Convexity Theorem. SIAM Journal on Control and Optimization, 1971, 9, 351-353.	1.6	11
147	Outer Tangency Bifurcations of Chaotic Sets. Physical Review Letters, 1998, 80, 4867-4870.	7.8	10
148	The existence and nonexistence of critical points in bounded flows. Journal of Differential Equations, 1969, 6, 238-246.	2.2	9
149	Noncontinuable solutions of differential-delay equations. Proceedings of the American Mathematical Society, 1969, 21, 648-648.	0.8	9
150	Regularity results for real analytic homotopies. Numerische Mathematik, 1985, 46, 43-50.	1.9	9
151	Fixed points indices and period-doubling cascades. Journal of Fixed Point Theory and Applications, 2010, 8, 151-176.	1.1	9
152	Spaces of Solutions. , 1969, , 383-403.		9
153	Fractal Basin Boundaries with Unique Dimension. Annals of the New York Academy of Sciences, 1987, 497, 117-126.	3.8	8
154	Scaling of fractal basin boundaries near intermittency transitions to chaos. Physical Review A, 1989, 40, 1576-1581.	2.5	8
155	Why period-doubling cascades occur: Periodic orbit creation followed by stability shedding. Physica D: Nonlinear Phenomena, 1987, 28, 197-205.	2.8	7
156	Characterizing the basins with the most entangled boundaries. Ergodic Theory and Dynamical Systems, 2003, 23, 895-906.	0.6	7
157	Period-doubling cascades for large perturbations of Hénon families. Journal of Fixed Point Theory and Applications, 2009, 6, 153-163.	1.1	7
158	Linear perturbations of ordinary differential equations. Proceedings of the American Mathematical Society, 1970, 26, 255-255.	0.8	6
159	Basins of Attraction. Applied Mathematical Sciences (Switzerland), 1994, , 269-314.	0.8	6
160	Multichaos from Quasiperiodicity. SIAM Journal on Applied Dynamical Systems, 2017, 16, 2196-2212.	1.6	6
161	Identifying perturbations which preserve asymptotic stability. Proceedings of the American Mathematical Society, 1969, 22, 513-518.	0.8	5
162	Generalized Lorenz equations on a three-sphere. European Physical Journal: Special Topics, 2017, 226, 1751-1764.	2.6	5

#	Article	IF	CITATIONS
163	Invariance for ordinary differential equations: Correction. Mathematical Systems Theory, 1968, 2, 381-381.	0.5	4
164	Flows on S3 and R3 without periodic orbits. Lecture Notes in Mathematics, 1983, , 401-407.	0.2	4
165	Piecewise linear maps with heterogeneous chaos. Nonlinearity, 2021, 34, 5744-5761.	1.4	4
166	One-Dimensional Maps. Textbooks in Mathematical Sciences, 1997, , 1-42.	0.0	4
167	Bifurcation Diagrams. Applied Mathematical Sciences (Switzerland), 1994, , 229-268.	0.8	4
168	Perturbing asymptotically stable differential equations. Bulletin of the American Mathematical Society, 1968, 74, 992-996.	3.9	3
169	Shadowability of Chaotic Dynamical Systems. Handbook of Dynamical Systems, 2002, 2, 313-344.	0.6	3
170	Measurements of a Physical Process Satisfy a Difference Equation. Journal of Difference Equations and Applications, 2002, 8, 13-24.	1.1	3
171	Enveloping manifolds. Topology and Its Applications, 2004, 145, 233-239.	0.4	2
172	Infinite towers in the graphs of many dynamical systems. Nonlinear Dynamics, 2021, 105, 813-835.	5.2	2
173	TOWARD A UNIFICATION OF ORDINARY DIFFERENTIAL EQUATIONS WITH NONLINEAR SEMI-GROUP THEORY. , 1975, , 424-433.		2
174	Using chaos to direct trajectories to targets. , 1996, , 114-117.		1
175	Shadowing in Higher Dimensions. , 2007, , 241-246.		1
176	Invariance for Contingent Equations. , 1969, , 379-381.		1
177	Existence and Stability of Periodic Solutions of x′(t) = —f(x(t), x(t — 1)). , 1976, , 137-141.		1
178	Fractals. Textbooks in Mathematical Sciences, 1997, , 149-191.	0.0	1
179	Chaotic Attractors. Textbooks in Mathematical Sciences, 1997, , 231-271.	0.0	1

#	Article	IF	CITATIONS
181	Chaotic n-Dimensional Euclidean and Hyperbolic Open Billiards and Chaotic Spinning Planar Billiards. SIAM Journal on Applied Dynamical Systems, 2008, 7, 421-436.	1.6	0
182	Crinkled changes of variables for maps on a circle. Nonlinear Dynamics, 2020, 102, 645-652.	5.2	0
183	MODELING GONORRHEA. , 1977, , 367-382.		0
184	Global Implications of the Implicit Function Theorem. NATO ASI Series Series B: Physics, 1991, , 249-258.	0.2	0
185	Changing the Program. Applied Mathematical Sciences (Switzerland), 1994, , 407-432.	0.8	0
186	Dimension and Lyapunov Exponents. Applied Mathematical Sciences (Switzerland), 1994, , 201-228.	0.8	0
187	Following Periodic Orbits. Applied Mathematical Sciences (Switzerland), 1994, , 391-406.	0.8	0