Junichi Isoya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988241/publications.pdf

Version: 2024-02-01

		117625	206112
50	6,429	34	48
papers	citations	h-index	g-index
51	51	51	5163
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultralong spin coherence time in isotopically engineered diamond. Nature Materials, 2009, 8, 383-387.	27.5	1,596
2	High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond. Nano Letters, 2013, 13, 2738-2742.	9.1	572
3	Quantum error correction in a solid-state hybrid spin register. Nature, 2014, 506, 204-207.	27.8	475
4	Hybrid Quantum Circuit with a Superconducting Qubit Coupled to a Spin Ensemble. Physical Review Letters, 2011, 107, 220501.	7.8	335
5	Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Physical Review Letters, 2014, 113, 113602.	7.8	333
6	Nanoscale nuclear magnetic resonance with chemical resolution. Science, 2017, 357, 67-71.	12.6	240
7	Multiple intrinsically identical single-photon emitters in the solid state. Nature Communications, 2014, 5, 4739.	12.8	232
8	Negative- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math> System of Carbon Vacancy in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn><mml:mi>H</mml:mi></mml:math> -SiC. Physical Review Letters, 2012, 109, 187603.	7.8	219
9	Sensing single remote nuclear spins. Nature Nanotechnology, 2012, 7, 657-662.	31.5	217
10	All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond. Physical Review Letters, 2014, 113, 263602.	7.8	216
11	Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nature Communications, 2014, 5, 4703.	12.8	211
12	Extending spin coherence times of diamond qubits by high-temperature annealing. Physical Review B, 2013, 88, .	3.2	122
13	Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science, 2019, 363, 728-731.	12.6	120
14	Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy withS=32andC3vsymmetry inn-type4Hâ^'SiC. Physical Review B, 2002, 66, .	3.2	113
15	Superradiant emission from colour centres in diamond. Nature Physics, 2018, 14, 1168-1172.	16.7	106
16	Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations. Nature Communications, 2015, 6, 8456.	12.8	83
17	Homoepitaxial diamond film growth: High purity, high crystalline quality, isotopic enrichment, and single color center formation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2365-2384.	1.8	68
18	Robust and Accurate Electric Field Sensing with Solid State Spin Ensembles. Nano Letters, 2019, 19, 4904-4910.	9.1	68

#	Article	IF	Citations
19	Protecting a Diamond Quantum Memory by Charge State Control. Nano Letters, 2017, 17, 5931-5937.	9.1	66
20	Optically induced dynamic nuclear spin polarisation in diamond. New Journal of Physics, 2016, 18, 013040.	2.9	65
21	High-resolution spectroscopy of single nuclear spins via sequential weak measurements. Nature Communications, 2019, 10, 594.	12.8	60
22	Integrated and Portable Magnetometer Based on Nitrogenâ€Vacancy Ensembles in Diamond. Advanced Quantum Technologies, 2021, 4, 2000111.	3.9	60
23	Zero-Field Magnetometry Based on Nitrogen-Vacancy Ensembles in Diamond. Physical Review Applied, 2019, 11, .	3.8	58
24	Long coherence time of spin qubits in ¹² C enriched polycrystalline chemical vapor deposition diamond. Applied Physics Letters, 2012, 101, 012405.	3.3	56
25	Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters. Nature Communications, 2017, 8, 834.	12.8	53
26	Solid-state electron spin lifetime limited by phononic vacuum modes. Nature Materials, 2018, 17, 313-317.	27.5	53
27	Storage and retrieval of microwave fields at the single-photon level in a spin ensemble. Physical Review A, 2015, 92, .	2.5	52
28	Quantum Metrology with Strongly Interacting Spin Systems. Physical Review X, 2020, 10, .	8.9	52
29	Diamond Magnetometry and Gradiometry Towards Subpicotesla dc Field Measurement. Physical Review Applied, 2021, 15, .	3.8	49
30	Charge state stabilization of shallow nitrogen vacancy centers in diamond by oxygen surface modification. Japanese Journal of Applied Physics, 2017, 56, 04CK08.	1.5	46
31	Nitrogen-Terminated Diamond Surface for Nanoscale NMR by Shallow Nitrogen-Vacancy Centers. Journal of Physical Chemistry C, 2019, 123, 3594-3604.	3.1	46
32	Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nature Communications, 2019, 10, 5569.	12.8	43
33	Strongly coupled diamond spin qubits by molecular nitrogen implantation. Physical Review B, 2013, 88,	3.2	41
34	Heterodyne sensing of microwaves with a quantum sensor. Nature Communications, 2021, 12, 2737.	12.8	38
35	Microwave-Free Vector Magnetometry with Nitrogen-Vacancy Centers along a Single Axis in Diamond. Physical Review Applied, 2020, 13, .	3.8	36
36	Probing Quantum Thermalization of a Disordered Dipolar Spin Ensemble with Discrete Time-Crystalline Order. Physical Review Letters, 2019, 122, 043603.	7.8	33

#	Article	IF	Citations
37	Triple nitrogen-vacancy centre fabrication by C5N4Hn ion implantation. Nature Communications, 2019, 10, 2664.	12.8	33
38	Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator. Applied Physics Letters, 2016, 109, 033508.	3.3	27
39	Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave resonators. Review of Scientific Instruments, 2015, 86, 064704.	1.3	26
40	Efficient conversion of nitrogen to nitrogen-vacancy centers in diamond particles with high-temperature electron irradiation. Carbon, 2020, 170, 182-190.	10.3	25
41	Lithographically engineered shallow nitrogen-vacancy centers in diamond for external nuclear spin sensing. New Journal of Physics, 2018, 20, 083029.	2.9	18
42	Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study. Physical Review B, 2021, 103, .	3.2	16
43	Diffusion of Vacancies Created by Highâ€Energy Heavy Ion Strike Into Diamond. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700160.	1.8	13
44	A web-based database for EPR centers in semiconductors. Physica B: Condensed Matter, 2006, 376-377, 249-252.	2.7	12
45	Isotopic identification of engineered nitrogen-vacancy spin qubits in ultrapure diamond. Physical Review B, 2014, 90, .	3.2	10
46	Imaging Damage in Steel Using a Diamond Magnetometer. Physical Review Applied, 2021, 15, .	3.8	7
47	Electrically Detected Magnetic Resonance (EDMR) Studies of SiC-SiO ₂ Interfaces. Materials Science Forum, 0, 717-720, 427-432.	0.3	4
48	Negatively charged boron vacancy center in diamond. Physical Review B, 2022, 105, .	3.2	3
49	EPR Identification of Defects and Impurities in SiC: To be Decisive. Materials Science Forum, 2008, 600-603, 279-284.	0.3	2
50	Creation of multiple NV centers by phthalocyanine ion implantation. Applied Physics Express, 0, , .	2.4	0