Tetsuo Moriguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988179/publications.pdf Version: 2024-02-01

TETSUO MODICUCHI

#	Article	IF	CITATIONS
1	Ecrg4 peptide is the ligand of multiple scavenger receptors. Scientific Reports, 2018, 8, 4048.	3.3	20
2	A Powerful CRISPR/Cas9â€Based Method for Targeted Transcriptional Activation. Angewandte Chemie, 2016, 128, 6562-6566.	2.0	2
3	A Powerful CRISPR/Cas9â€Based Method for Targeted Transcriptional Activation. Angewandte Chemie - International Edition, 2016, 55, 6452-6456.	13.8	13
4	Ecrg4 contributes to the anti-glioma immunosurveillance through type-I interferon signaling. Oncolmmunology, 2016, 5, e1242547.	4.6	14
5	Involvement of LKB1 in epithelial–mesenchymal transition (EMT) of human lung cancer cells. Lung Cancer, 2010, 70, 136-145.	2.0	85
6	<i>Caenorhabditis elegans</i> WNK–STE20 pathway regulates tube formation by modulating ClC channel activity. EMBO Reports, 2008, 9, 70-75.	4.5	41
7	Molecular Pathogenesis of Pseudohypoaldosteronism Type II: Generation and Analysis of a Wnk4D561A/+ Knockin Mouse Model. Cell Metabolism, 2007, 5, 331-344.	16.2	287
8	WNK1 Regulates Phosphorylation of Cation-Chloride-coupled Cotransporters via the STE20-related Kinases, SPAK and OSR1. Journal of Biological Chemistry, 2005, 280, 42685-42693.	3.4	401
9	DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes To Cells, 2004, 9, 549-560.	1.2	77
10	Activation of p38 Kinase in the Gerbil Hippocampus Showing Ischemic Tolerance. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1052-1059.	4.3	48
11	JNK functions in the nonâ€canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Reports, 2002, 3, 69-75.	4.5	394
12	A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nature Cell Biology, 2000, 2, 110-116.	10.3	777
13	The Evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO Journal, 2000, 19, 2958-2968.	7.8	106
14	Activation of Mitogen-Activated Protein Kinases after Transient Forebrain Ischemia in Gerbil Hippocampus. Journal of Neuroscience, 2000, 20, 4506-4514.	3.6	239
15	Distinct Domains of Mouse Dishevelled Are Responsible for the c-Jun N-terminal Kinase/Stress-activated Protein Kinase Activation and the Axis Formation in Vertebrates. Journal of Biological Chemistry, 1999, 274, 30957-30962.	3.4	127
16	Activation of the Protein Kinase ERK5/BMK1 by Receptor Tyrosine Kinases. Journal of Biological Chemistry, 1999, 274, 26563-26571.	3.4	475
17	Molecular Cloning and Characterization of a Novel Dual Specificity Phosphatase, MKP-5. Journal of Biological Chemistry, 1999, 274, 19949-19956.	3.4	196
18	Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO Journal, 1998, 17, 2728-2735.	7.8	294

Tetsuo Moriguchi

#	Article	IF	CITATIONS
19	Differential Roles of ERK and p38 MAP Kinase Pathways in Positive and Negative Selection of T Lymphocytes. Immunity, 1998, 9, 565-574.	14.3	204
20	Activation of the Protein Kinase p38 in the Spindle Assembly Checkpoint and Mitotic Arrest. Science, 1998, 280, 599-602.	12.6	269
21	Differential Activation of Two JNK Activators, MKK7 and SEK1, by MKN28-derived Nonreceptor Serine/Threonine Kinase/Mixed Lineage Kinase 2. Journal of Biological Chemistry, 1998, 273, 7406-7412.	3.4	43
22	T Lymphocyte Activation Signals for Interleukin-2 Production Involve Activation of MKK6-p38 and MKK7-SAPK/JNK Signaling Pathways Sensitive to Cyclosporin A. Journal of Biological Chemistry, 1998, 273, 12378-12382.	3.4	183
23	TAK1 Mediates the Ceramide Signaling to Stress-activated Protein Kinase/c-Jun N-terminal Kinase. Journal of Biological Chemistry, 1997, 272, 8141-8144.	3.4	307
24	LOK Is a Novel Mouse STE20-like Protein Kinase That Is Expressed Predominantly in Lymphocytes. Journal of Biological Chemistry, 1997, 272, 22679-22684.	3.4	76
25	Fas Induces Cytoplasmic Apoptotic Responses and Activation of the MKK7-JNK/SAPK and MKK6-p38 Pathways Independent of CPP32-like Proteases. Journal of Cell Biology, 1997, 139, 1005-1015.	5.2	152
26	Induction of Apoptosis by ASK1, a Mammalian MAPKKK That Activates SAPK/JNK and p38 Signaling Pathways. Science, 1997, 275, 90-94.	12.6	2,209
27	Activation of p38 MAP Kinase Pathway by Erythropoietin and Interleukin-3. Blood, 1997, 90, 929-934.	1.4	84
28	A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses. EMBO Journal, 1997, 16, 7045-7053.	7.8	239
29	Activation of p38 MAP Kinase Pathway by Erythropoietin and Interleukin-3. Blood, 1997, 90, 929-934.	1.4	11
30	Roles of the MAP Kinase Cascade in Vertebrates. Advances in Pharmacology, 1996, 36, 121-137.	2.0	46
31	A Novel Kinase Cascade Mediated by Mitogen-activated Protein Kinase Kinase 6 and MKK3. Journal of Biological Chemistry, 1996, 271, 13675-13679.	3.4	417
32	Purification and Identification of a Major Activator for p38 from Osmotically Shocked Cells. Journal of Biological Chemistry, 1996, 271, 26981-26988.	3.4	156
33	Ras-Dependent and Ras-Independent Activation Pathways for the Stress-Activated-Protein-Kinase Cascade. FEBS Journal, 1996, 241, 315-321.	0.2	39
34	Activation of two Isoforms of Mitogen-Activated Protein Kinase Kinase in Response to Epidermal Growth Factor and Nerve Growth Factor. FEBS Journal, 1995, 234, 32-38.	0.2	23
35	Activation of Protein Kinase Cascades by Osmotic Shock. Journal of Biological Chemistry, 1995, 270, 12781-12786.	3.4	125
36	Evidence for Multiple Activators for Stress-activated Protein Kinases/c-Jun Amino-terminal Kinases Journal of Biological Chemistry, 1995, 270, 12969-12972.	3.4	108