
Siddhartha Jaiswal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6987490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clonal Hematopoiesis Is Associated With Higher Risk of Stroke. Stroke, 2022, 53, 788-797.	2.0	88
2	Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood, 2022, 139, 357-368.	1.4	106
3	Clonal Hematopoiesis Analyses in Clinical, Epidemiologic, and Genetic Aging Studies to Unravel Underlying Mechanisms of Age-Related Dysfunction in Humans. Frontiers in Aging, 2022, 3, .	2.6	3
4	Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Science Advances, 2022, 8, eabl6579.	10.3	36
5	Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circulation Research, 2022, 130, 1510-1530.	4.5	25
6	Longitudinal profiling of clonal hematopoiesis provides insight into clonal dynamics. Immunity and Ageing, 2022, 19, .	4.2	20
7	<i>TET2</i> -mutant clonal hematopoiesis and risk of gout. Blood, 2022, 140, 1094-1103.	1.4	57
8	Preventive Cardio-Oncology: Cardiovascular Disease Prevention in Cancer Patients and Survivors. Current Treatment Options in Cardiovascular Medicine, 2021, 23, 1.	0.9	5
9	Insights into clonal hematopoiesis and its relation to cancer risk. Current Opinion in Genetics and Development, 2021, 66, 63-69.	3.3	20
10	Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. Aging Cell, 2021, 20, e13366.	6.7	72
11	<i>ZBTB33</i> Is Mutated in Clonal Hematopoiesis and Myelodysplastic Syndromes and Impacts RNA Splicing. Blood Cancer Discovery, 2021, 2, 500-517.	5.0	17
12	Infection makes micro-CHIPs into macro-CHIPs. Cell Stem Cell, 2021, 28, 1335-1336.	11.1	2
13	<i>Dnmt3a</i> -mutated clonal hematopoiesis promotes osteoporosis. Journal of Experimental Medicine, 2021, 218, .	8.5	81
14	Clonal Hematopoiesis is Associated with Reduced Risk of Alzheimer's Disease. Blood, 2021, 138, 5-5.	1.4	15
15	Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nature Reviews Cardiology, 2020, 17, 137-144.	13.7	215
16	Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature, 2020, 586, 763-768.	27.8	376
17	Clonal hematopoiesis and non-hematologic disorders. Blood, 2020, 136, 1606-1614.	1.4	71
18	Clonal Hematopoiesis of IndeterminateÂPotential Reshapes Age-Related CVD. Journal of the American College of Cardiology, 2019, 74, 578-586.	2.8	57

SIDDHARTHA JAISWAL

#	Article	IF	CITATIONS
19	Clonal Hematopoiesis. Journal of the American College of Cardiology, 2019, 74, 567-577.	2.8	150
20	Clonal hematopoiesis in human aging and disease. Science, 2019, 366, .	12.6	590
21	Genetic regulation of gene expression and splicing during a 10-year period of human aging. Genome Biology, 2019, 20, 230.	8.8	57
22	Biological implications of clonal hematopoiesis. Experimental Hematology, 2019, 77, 1-5.	0.4	21
23	lt's in the blood. Nature Medicine, 2019, 25, 1184-1184.	30.7	Ο
24	Clonal hematopoiesis: Pre-cancer PLUS. Advances in Cancer Research, 2019, 141, 85-128.	5.0	35
25	Connections Between Clonal Hematopoiesis, Cardiovascular Disease, and Cancer. JAMA Cardiology, 2019, 4, 380.	6.1	42
26	CHIPping Away at the Pathogenesis of Heart Failure. JAMA Cardiology, 2019, 4, 5.	6.1	8
27	PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood, 2018, 132, 1095-1105.	1.4	160
28	Clonal Hematopoiesis. Circulation Genomic and Precision Medicine, 2018, 11, e001926.	3.6	43
29	Predicting progression to AML. Nature Medicine, 2018, 24, 904-906.	30.7	22
30	Loss-of-Function Mutations in Dnmt3a and Tet2 Lead to Accelerated Atherosclerosis and Convergent Macrophage Phenotypes in Mice. Blood, 2018, 132, 745-745.	1.4	21
31	Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma. Journal of Clinical Oncology, 2017, 35, 1598-1605.	1.6	339
32	Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. New England Journal of Medicine, 2017, 377, 111-121.	27.0	1,738
33	Clonal Hematopoiesis and Atherosclerosis. New England Journal of Medicine, 2017, 377, 1400-1402.	27.0	33
34	Clonal hematopoiesis. Seminars in Hematology, 2017, 54, 43-50.	3.4	100
35	Clonal Hematopoiesis Associated with Adverse Outcomes Following Autologous Stem Cell Transplantation for Non-Hodgkin Lymphoma. Blood, 2016, 128, 986-986.	1.4	3
36	PPM1D Truncating Mutations Confer Chemotherapy Resistance in Hematopoietic Stem Cells, Which Is Reversible By PPM1D Inhibition. Blood, 2016, 128, 740-740.	1.4	0

SIDDHARTHA JAISWAL

#	Article	IF	CITATIONS
37	Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood, 2015, 126, 9-16.	1.4	1,493
38	Clonal Hematopoiesis and Blood-Cancer Risk. New England Journal of Medicine, 2015, 372, 1071-1072.	27.0	57
39	Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nature Medicine, 2015, 21, 71-75.	30.7	106
40	Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine, 2014, 371, 2488-2498.	27.0	3,474
41	MDS Is a Stem Cell Disorder After All. Cancer Cell, 2014, 25, 713-714.	16.8	16
42	Clonal Hematopoiesis with Somatic Mutations Is a Common, Age-Related Condition Associated with Adverse Outcomes. Blood, 2014, 124, 840-840.	1.4	1
43	Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. Journal of Experimental Medicine, 2012, 209, 1325-1334.	8.5	147
44	The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6662-6667.	7.1	1,255
45	Macrophages as mediators of tumor immunosurveillance. Trends in Immunology, 2010, 31, 212-219.	6.8	215
46	Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47. Science Translational Medicine, 2010, 2, 63ra94.	12.4	591
47	Hematopoietic Stem and Progenitor Cells and the Inflammatory Response. Annals of the New York Academy of Sciences, 2009, 1174, 118-121.	3.8	18
48	CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Cell, 2009, 138, 286-299.	28.9	1,371
49	CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell, 2009, 138, 271-285.	28.9	1,282
50	Expression of <i>BCR/ABL</i> and <i>BCL-2</i> in myeloid progenitors leads to myeloid leukemias. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10002-10007.	7.1	156
51	Modeling the temporal dynamics of clonal hematopoiesis. , 0, , .		Ο