
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6987343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile green synthesis of ZnO-RGO nanocomposites with enhanced anticancer efficacy. Methods, 2022, 199, 28-36.	3.8	63
2	Enhanced Anticancer Performance of Eco-Friendly-Prepared Mo-ZnO/RGO Nanocomposites: Role of Oxidative Stress and Apoptosis. ACS Omega, 2022, 7, 7103-7115.	3.5	40
3	One-Pot Synthesis of SnO2-rGO Nanocomposite for Enhanced Photocatalytic and Anticancer Activity. Polymers, 2022, 14, 2036.	4.5	13
4	CeO2-Zn Nanocomposite Induced Superoxide, Autophagy and a Non-Apoptotic Mode of Cell Death in Human Umbilical-Vein-Derived Endothelial (HUVE) Cells. Toxics, 2022, 10, 250.	3.7	6
5	Combined effect of single-walled carbon nanotubes and cadmium on human lung cancer cells. Environmental Science and Pollution Research, 2022, 29, 87844-87857.	5.3	9
6	SnO2-Doped ZnO/Reduced Graphene Oxide Nanocomposites: Synthesis, Characterization, and Improved Anticancer Activity via Oxidative Stress Pathway. International Journal of Nanomedicine, 2021, Volume 16, 89-104.	6.7	95
7	Pt-Coated Au Nanoparticle Toxicity Is Preferentially Triggered Via Mitochondrial Nitric Oxide/Reactive Oxygen Species in Human Liver Cancer (HepG2) Cells. ACS Omega, 2021, 6, 15431-15441.	3.5	5
8	Facile Synthesis of Zn-Doped Bi ₂ O ₃ Nanoparticles and Their Selective Cytotoxicity toward Cancer Cells. ACS Omega, 2021, 6, 17353-17361.	3.5	48
9	Anti-Inflammatory CeO2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules, 2021, 26, 5416.	3.8	8
10	Co-exposure of Bi2O3 nanoparticles and bezo[a]pyrene-enhanced in vitro cytotoxicity of mouse spermatogonia cells. Environmental Science and Pollution Research, 2021, 28, 17109-17118.	5.3	16
11	A Novel Green Preparation of Ag/RGO Nanocomposites with Highly Effective Anticancer Performance. Polymers, 2021, 13, 3350.	4.5	44
12	Cytotoxicity and apoptosis response of hexagonal zinc oxide nanorods against human hepatocellular liver carcinoma cell line. Journal of King Saud University - Science, 2021, 33, 101658.	3.5	6
13	Facile Synthesis, Characterization, Photocatalytic Activity, and Cytotoxicity of Ag-Doped MgO Nanoparticles. Nanomaterials, 2021, 11, 2915.	4.1	36
14	Mitochondrial dysfunction, autophagy stimulation and non-apoptotic cell death caused by nitric oxide-inducing Pt-coated Au nanoparticle in human lung carcinoma cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129452.	2.4	17
15	Influence of silica nanoparticles on cadmiumâ€induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells. Environmental Toxicology, 2020, 35, 599-608.	4.0	11
16	Barium Titanate (BaTiO3) Nanoparticles Exert Cytotoxicity through Oxidative Stress in Human Lung Carcinoma (A549) Cells. Nanomaterials, 2020, 10, 2309.	4.1	20
17	Single-Walled Carbon Nanotubes Attenuate Cytotoxic and Oxidative Stress Response of Pb in Human Lung Epithelial (A549) Cells. International Journal of Environmental Research and Public Health, 2020, 17, 8221.	2.6	9
18	Gadolinium Oxide Nanoparticles Induce Toxicity in Human Endothelial HUVECs via Lipid Peroxidation, Mitochondrial Dysfunction and Autophagy Modulation. Nanomaterials, 2020, 10, 1675.	4.1	27

#	Article	IF	CITATIONS
19	High Surface Reactivity and Biocompatibility of Y2O3 NPs in Human MCF-7 Epithelial and HT-1080 Fibro-Blast Cells. Molecules, 2020, 25, 1137.	3.8	10
20	Alleviating effects of reduced graphene oxide against leadâ€induced cytotoxicity and oxidative stress in human alveolar epithelial (A549) cells. Journal of Applied Toxicology, 2020, 40, 1228-1238.	2.8	5
21	Reduced graphene oxide mitigates cadmium-induced cytotoxicity and oxidative stress in HepG2 cells. Food and Chemical Toxicology, 2020, 143, 111515.	3.6	21
22	Investigation of Cytotoxicity, Apoptosis, and Oxidative Stress Response of Fe3O4-RGO Nanocomposites in Human Liver HepG2 cells. Materials, 2020, 13, 660.	2.9	14
23	TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. Environmental Science and Pollution Research, 2020, 27, 10425-10435.	5.3	29
24	Co-Exposure to SiO2 Nanoparticles and Arsenic Induced Augmentation of Oxidative Stress and Mitochondria-Dependent Apoptosis in Human Cells. International Journal of Environmental Research and Public Health, 2019, 16, 3199.	2.6	36
25	Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicology in Vitro, 2019, 57, 18-27.	2.4	53
26	Evaluation of the Cytotoxicity and Oxidative Stress Response of CeO2-RGO Nanocomposites in Human Lung Epithelial A549 Cells. Nanomaterials, 2019, 9, 1709.	4.1	28
27	Different cytotoxic and apoptotic responses of MCF-7 and HT1080 cells to MnO2 nanoparticles are based on similar mode of action. Toxicology, 2019, 411, 71-80.	4.2	36
28	Mesoporous multi-silica layer-coated Y2O3:Eu core-shell nanoparticles: Synthesis, luminescent properties and cytotoxicity evaluation. Materials Science and Engineering C, 2019, 96, 365-373.	7.3	42
29	Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere, 2019, 216, 823-831.	8.2	85
30	Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells. Current Drug Metabolism, 2019, 20, 907-917.	1.2	14
31	Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO ₂ nanoparticles in A549 cells. Human and Experimental Toxicology, 2018, 37, 496-507.	2.2	21
32	Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clinica Chimica Acta, 2018, 487, 186-196.	1.1	17
33	MgO nanoparticles cytotoxicity caused primarily by GSH depletion in human lung epithelial cells. Journal of Trace Elements in Medicine and Biology, 2018, 50, 283-290.	3.0	23
34	Oxidative stress mediated cytotoxicity of tin (IV) oxide (SnO2) nanoparticles in human breast cancer (MCF-7) cells. Colloids and Surfaces B: Biointerfaces, 2018, 172, 152-160.	5.0	39
35	Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 802-813.	2.4	118
36	Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 156, 157-164.	5.0	30

#	Article	IF	CITATIONS
37	Therapeutic targets in the selective killing of cancer cells by nanomaterials. Clinica Chimica Acta, 2017, 469, 53-62.	1.1	14
38	Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicology in Vitro, 2017, 40, 94-101.	2.4	32
39	Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Scientific Reports, 2017, 7, 17662.	3.3	127
40	Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and Industrial Health, 2016, 32, 809-821.	1.4	91
41	Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids and Surfaces B: Biointerfaces, 2016, 148, 665-673.	5.0	56
42	Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Scientific Reports, 2016, 6, 30196.	3.3	74
43	Differential cytotoxicity of copper ferrite nanoparticles in different human cells. Journal of Applied Toxicology, 2016, 36, 1284-1293.	2.8	47
44	Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells. Colloids and Surfaces B: Biointerfaces, 2016, 142, 46-54.	5.0	66
45	Cytotoxic response of platinum oated gold nanorods in human breast cancer cells at very low exposure levels. Environmental Toxicology, 2016, 31, 1344-1356.	4.0	8
46	Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Scientific Reports, 2015, 5, 13876.	3.3	110
47	Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere, 2015, 135, 278-288.	8.2	79
48	Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Archives of Toxicology, 2015, 89, 1895-1907.	4.2	45
49	Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells. Journal of Colloid and Interface Science, 2015, 457, 370-377.	9.4	45
50	Glutathione replenishing potential of CeO 2 nanoparticles in human breast and fibrosarcoma cells. Journal of Colloid and Interface Science, 2015, 453, 21-27.	9.4	52
51	Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells. Cell and Bioscience, 2015, 5, 55.	4.8	57
52	Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine, 2015, 10, 2365-2377.	3.3	91
53	Cytotoxicity and apoptosis induction by nanoscale talc particles from two different geographical regions in human lung epithelial cells. Environmental Toxicology, 2014, 29, 394-406.	4.0	19
54	Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clinica Chimica Acta, 2014, 436, 78-92.	1.1	184

#	Article	IF	CITATIONS
55	Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 2013, 93, 2514-2522.	8.2	143
56	Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	55
57	Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 2012, 7, 845.	6.7	435
58	Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. Journal of Toxicological Sciences, 2012, 37, 139-148.	1.5	43
59	Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicology and Applied Pharmacology, 2012, 259, 160-168.	2.8	183
60	Nano-Talc Stabilizes TNF-α m-RNA in Human Macrophages. Journal of Biomedical Nanotechnology, 2011, 7, 112-113.	1.1	5
61	ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 904-913.	3.3	209
62	Toxic responses in primary rat hepatocytes exposed with occupational dust collected from work environment of bone-based industrial unit. Chemosphere, 2011, 83, 455-460.	8.2	1
63	Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 2011, 283, 101-108.	4.2	279
64	Environmental lead exposure as a risk for childhood aplastic anemia. BioScience Trends, 2011, 5, 38-43.	3.4	28
65	Nanotoxicity of Dolomite Mineral of Commercial Importance in India. Journal of Biomedical Nanotechnology, 2011, 7, 114-115.	1.1	1
66	Elevated blood lead levels and cytogenetic markers in buccal epithelial cells of painters in India. Environmental Science and Pollution Research, 2010, 17, 1347-1354.	5.3	26
67	Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology, 2010, 276, 95-102.	4.2	161
68	Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications, 2010, 396, 578-583.	2.1	321
69	The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by	2.4	38