Jacque L Duncan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6985798/publications.pdf

Version: 2024-02-01

147801 149698 5,380 112 31 56 citations h-index g-index papers 114 114 114 4949 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Correlation Between Localized Choriocapillaris Perfusion and Macular Function in Eyes with Geographic Atrophy. American Journal of Ophthalmology, 2022, 234, 174-182.	3.3	7
2	Choriocapillaris Changes in Myopic Macular Degeneration. Translational Vision Science and Technology, 2022, 11, 37.	2.2	7
3	VALIDATION OF A DEEP LEARNING-BASED ALGORITHM FOR SEGMENTATION OF THE ELLIPSOID ZONE ON OPTICAL COHERENCE TOMOGRAPHY IMAGES OF AN USH2A-RELATED RETINAL DEGENERATION CLINICAL TRIAL. Retina, 2022, 42, 1347-1355.	1.7	5
4	Tissueâ€specific genotype–phenotype correlations among USH2Aâ€related disorders in the RUSH2A study. Human Mutation, 2022, 43, 613-624.	2.5	10
5	The RUSH2A Study: Dark-Adapted Visual Fields in Patients With Retinal Degeneration Associated With Biallelic Variants in the <i>USH2A</i>		7
6	Expanding the phenotype of TTLL5-associated retinal dystrophy: a case series. Orphanet Journal of Rare Diseases, 2022, 17, 146.	2.7	3
7	Chorioretinal Findings as the Initial Presentation of Chronic Granulomatous Disease. Ophthalmic Surgery Lasers and Imaging Retina, 2022, 53, 234-238.	0.7	1
8	PRESUMED FOVEAL BACILLARY LAYER DETACHMENT IN A PATIENT WITH TOXOPLASMOSIS CHORIORETINITIS AND PACHYCHOROID DISEASE. Retinal Cases and Brief Reports, 2021, 15, 391-398.	0.6	63
9	Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Progress in Retinal and Eye Research, 2021, 83, 100920.	15.5	29
10	Response to: Comment on: Dark without pressure retinal changes in a paediatric age group. Eye, 2021, 35, 3173-3173.	2.1	0
11	PHENOTYPIC HETEROGENEITY IN A FAMILY WITH X-LINKED FAMILIAL EXUDATIVE VITREORETINOPATHY WITH PREVENTION OF VISUAL LOSS IN AN AFFECTED MALE CHILD WITH LASER TREATMENT IN INFANCY. Retinal Cases and Brief Reports, 2021, 15, 324-329.	0.6	1
12	Dark without pressure retinal changes in a paediatric age group. Eye, 2021, 35, 1221-1227.	2.1	5
13	Biometrics, Impact, and Significance of Basal Linear Deposit and Subretinal Drusenoid Deposit in Age-Related Macular Degeneration., 2021, 62, 33.		40
14	LEBER CONGENITAL AMAUROSIS DUE TO CEP290 MUTATIONS—SEVERE VISION IMPAIRMENT WITH A HIGH UNMET MEDICAL NEED. Retina, 2021, 41, 898-907.	1.7	24
15	Auditory and olfactory findings in patients with USH2A â€related retinal degeneration—Findings at baseline from the rate of progression in USH2A â€related retinal degeneration natural history study () Tj ETQq1 1	017284314	1 rgBT /Overlo
16	Retinal Degeneration Secondary to MERTK Mutations: Potential Candidate for Gene Therapy. International Ophthalmology Clinics, 2021, 61, 143-148.	0.7	0
17	Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genetics, 2021, 17, e1009848.	3.5	13
18	Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model. Stem Cell Reports, 2021, 16, 2690-2702.	4.8	28

#	Article	IF	Citations
19	Comparative Natural History of Visual Function From Patients With Biallelic Variants in <i>BBS1</i> and <i>BBS10</i> ., 2021, 62, 26.		11
20	Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science and Technology, 2020, 9, 2.	2.2	56
21	ABUNDANCE AND MULTIMODAL VISIBILITY OF SOFT DRUSEN IN EARLY AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 1644-1648.	1.7	18
22	The RUSH2A Study: Best-Corrected Visual Acuity, Full-Field Electroretinography Amplitudes, and Full-Field Stimulus Thresholds at Baseline. Translational Vision Science and Technology, 2020, 9, 9.	2.2	31
23	Comparing Cone Structure and Function in <i>RHO-</i> and <i>RPGR-</i> Associated Retinitis Pigmentosa., 2020, 61, 42.		18
24	Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Human Molecular Genetics, 2020, 29, 2218-2239.	2.9	19
25	Perspectives on Gene Therapy: Choroideremia Represents a Challenging Model for the Treatment of Other Inherited Retinal Degenerations. Translational Vision Science and Technology, 2020, 9, 17.	2.2	11
26	Baseline Visual Field Findings in the RUSH2A Study: Associated Factors and Correlation With Other Measures of Disease Severity. American Journal of Ophthalmology, 2020, 219, 87-100.	3.3	22
27	OCT Angiography to Predict Geographic Atrophy Progression using Choriocapillaris Flow Void as a Biomarker. Translational Vision Science and Technology, 2020, 9, 6.	2.2	13
28	Automated morphometric measurement of the retinal pigment epithelium complex and choriocapillaris using swept source OCT. Biomedical Optics Express, 2020, 11, 1834.	2.9	11
29	Loss of Foveal Cone Structure Precedes Loss of Visual Acuity in Patients With Rod-Cone Degeneration. , 2019, 60, 3187.		19
30	Gene Therapy for Choroideremiaâ€"Progress and Remaining Questions. JAMA Ophthalmology, 2019, 137, 1254.	2.5	6
31	Influence of eye pigmentation on retinal degeneration in P23H and S334ter mutant rhodopsin transgenic rats. Experimental Eye Research, 2019, 187, 107755.	2.6	19
32	<p>Quantifying choriocapillaris hypoperfusion in patients with choroidal neovascularization using swept-source OCT angiography</p> . Clinical Ophthalmology, 2019, Volume 13, 1613-1620.	1.8	12
33	Cone Spacing Correlates With Retinal Thickness and Microperimetry in Patients With Inherited Retinal Degenerations. , 2019, 60, 1234.		26
34	Ciliary Neurotrophic Factor Treatment Improves Retinal Structure and Function in Macular Telangiectasia Type 2. Ophthalmology, 2019, 126, 550-551.	5.2	4
35	Understanding Ocular Inflammation in Eyes Treated With Intravitreal Gene Therapy. JAMA Ophthalmology, 2019, 137, 407.	2.5	2
36	Cone Structure Persists Beyond Margins of Short-Wavelength Autofluorescence in Choroideremia., 2019, 60, 4931.		13

#	Article	IF	Citations
37	CHOROIDEREMIA. Retina, 2019, 39, 2059-2069.	1.7	23
38	Dysflective Cones. Advances in Experimental Medicine and Biology, 2019, 1185, 133-137.	1.6	12
39	Multimodal Imaging in Choroideremia. Advances in Experimental Medicine and Biology, 2019, 1185, 139-143.	1.6	8
40	Quantifying Choriocapillaris Flow Voids in Patients With Geographic Atrophy Using Swept-Source OCT Angiography. Ophthalmic Surgery Lasers and Imaging Retina, 2019, 50, e229-e235.	0.7	7
41	Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Experimental Eye Research, 2018, 167, 56-90.	2.6	72
42	High-resolution Imaging in Male Germ Cell–Associated Kinase (MAK)-related Retinal Degeneration. American Journal of Ophthalmology, 2018, 185, 32-42.	3.3	4
43	OCT Angiography and Cone Photoreceptor Imaging in Geographic Atrophy. , 2018, 59, 5985.		15
44	Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Translational Vision Science and Technology, 2018, 7, 6.	2.2	168
45	Relationship Between Foveal Cone Structure and Visual Acuity Measured With Adaptive Optics Scanning Laser Ophthalmoscopy in Retinal Degeneration. , 2018, 59, 3385.		41
46	Cobalamin D Deficiency Identified Through Newborn Screening. JIMD Reports, 2018, 44, 73-77.	1.5	5
47	Visual Consequences of Delivering Therapies to the Subretinal Space. JAMA Ophthalmology, 2017, 135, 242.	2.5	7
48	Genetic analysis of 10 pedigrees with inherited retinal degeneration by exome sequencing and phenotype-genotype association. Physiological Genomics, 2017, 49, 216-229.	2.3	23
49	Inner retinal dystrophy in a patient with biallelic sequence variants in <i>BRAT1</i> . Ophthalmic Genetics, 2017, 38, 559-561.	1.2	6
50	A mutation in IFT43 causes non-syndromic recessive retinal degeneration. Human Molecular Genetics, 2017, 26, 4741-4751.	2.9	10
51	Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis. American Journal of Ophthalmology Case Reports, 2017, 7, 14-19.	0.7	31
52	Performance of realâ€world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system. Clinical and Experimental Ophthalmology, 2017, 45, 152-159.	2.6	80
53	Improvements in visionâ€related quality of life in blind patients implanted with the Argus II Epiretinal Prosthesis. Australasian journal of optometry, The, 2017, 100, 144-150.	1.3	49
54	Whole Genome Sequencing Revealed Mutations in Two Independent Genes as the Underlying Cause of Retinal Degeneration in an Ashkenazi Jewish Pedigree. Genes, 2017, 8, 210.	2.4	14

#	Article	IF	CITATIONS
55	Photoreceptor-Based Biomarkers in AOSLO Retinal Imaging. , 2017, 58, BIO255.		38
56	Ocular Phenotype of a Family with FAM161A-associated Retinal Degeneration. Ophthalmic Genetics, 2016, 37, 1-9.	1.2	13
57	Ocular findings in a patient with fucosidosis. American Journal of Ophthalmology Case Reports, 2016, 4, 83-86.	0.7	3
58	A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Human Molecular Genetics, 2016, 25, ddw113.	2.9	16
59	Long-term Follow-up of Patients With Retinitis Pigmentosa Receiving Intraocular Ciliary Neurotrophic Factor Implants. American Journal of Ophthalmology, 2016, 170, 10-14.	3.3	89
60	An analysis of observerâ€rated functional vision in patients implanted with the Argus II Retinal Prosthesis System at three years. Australasian journal of optometry, The, 2016, 99, 227-232.	1.3	53
61	Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology, 2016, 123, 2248-2254.	5.2	281
62	Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Scientific Reports, 2016, 6, 18602.	3.3	38
63	Spontaneous Regeneration of Human Photoreceptor Outer Segments. Scientific Reports, 2015, 5, 12364.	3.3	36
64	Adaptive Optics Ophthalmoscopy. Annual Review of Vision Science, 2015, 1, 19-50.	4.4	124
65	DIRECTIONAL OPTICAL COHERENCE TOMOGRAPHY PROVIDES ACCURATE OUTER NUCLEAR LAYER AND HENLE FIBER LAYER MEASUREMENTS. Retina, 2015, 35, 1511-1520.	1.7	118
66	Repeatability of Cone Spacing Measures in Eyes With Inherited Retinal Degenerations., 2015, 56, 6179.		28
67	Correlation of Serial Scleral and Corneal Pneumatonometry. Ophthalmology, 2015, 122, 1771-1776.	5.2	17
68	Correlation of Outer Nuclear Layer Thickness With Cone Density Values in Patients With Retinitis Pigmentosa and Healthy Subjects. Investigative Ophthalmology and Visual Science, 2015, 56, 372-381.	3.3	60
69	Adaptive Optics Microperimetry and OCT Images Show Preserved Function and Recovery of Cone Visibility in Macular Telangiectasia Type 2 Retinal Lesions. Investigative Ophthalmology and Visual Science, 2015, 56, 778-786.	3.3	80
70	The reliability of parafoveal cone density measurements. British Journal of Ophthalmology, 2014, 98, 1126-1131.	3.9	33
71	Effects of the Absence of Apolipoprotein E on Lipoproteins, Neurocognitive Function, and Retinal Function. JAMA Neurology, 2014, 71, 1228.	9.0	79
72	Randomized Trial of Ciliary Neurotrophic Factor Delivered by Encapsulated Cell Intraocular Implants for Retinitis Pigmentosa. American Journal of Ophthalmology, 2013, 156, 283-292.e1.	3.3	161

#	Article	IF	Citations
73	Cone Structure in Patients With Usher Syndrome Type III and Mutations in the Clarin 1 Gene. JAMA Ophthalmology, 2013, 131, 67.	2.5	34
74	Relationship Between Foveal Cone Structure and Clinical Measures of Visual Function in Patients With Inherited Retinal Degenerations. , 2013, 54, 5836.		81
75	High-Resolution Images of Retinal Structure in Patients with Choroideremia. , 2013, 54, 950.		83
76	Cone Structure Imaged With Adaptive Optics Scanning Laser Ophthalmoscopy in Eyes With Nonneovascular Age-Related Macular Degeneration., 2013, 54, 7498.		69
77	Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6% of autosomal dominant retinitis pigmentosa. Molecular Vision, 2013, 19, 2407-17.	1.1	20
78	Identification of a Novel Mutation in the CDHR1 Gene in a Family With Recessive Retinal Degeneration. JAMA Ophthalmology, 2012, 130, 1301.	2.4	49
79	Discordant Anatomical, Electrophysiological, and Visual Behavioral Profiles of Retinal Degeneration in Rat Models of Retinal Degenerative Disease., 2012, 53, 6232.		39
80	Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope. Biomedical Optics Express, 2011, 2, 2189.	2.9	147
81	Cone Structure in Retinal Degeneration Associated with Mutations in the <i>peripherin/RDS</i> Gene., 2011, 52, 1557.		55
82	Longitudinal Study of Cone Photoreceptors during Retinal Degeneration and in Response to Ciliary Neurotrophic Factor Treatment., 2011, 52, 2219.		249
83	Heterogeneous patterns of tissue injury in NARP syndrome. Journal of Neurology, 2011, 258, 440-448.	3.6	48
84	BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Human Mutation, 2011, 32, 610-619.	2.5	100
85	Abnormal Cone Structure in Foveal Schisis Cavities in X-Linked Retinoschisis from Mutations in Exon 6 of the <i>RS1 </i>		38
86	Mutations in chaperonin-like BBS genes are a major contributor to disease development in a multiethnic Bardet-Biedl syndrome patient population. Journal of Medical Genetics, 2010, 47, 453-463.	3.2	84
87	Traction centered nasal to the optic nerve head in high myopic observers. Journal of Modern Optics, 2009, 56, 2272-2294.	1.3	0
88	Adaptive Optics Scanning Laser Ophthalmoscopy Images in a Family with the Mitochondrial DNA T8993C Mutation., 2009, 50, 1838.		56
89	Sustained delivery of NTâ€3 from lens fiber cells in transgenic mice reveals specificity of neuroprotection in retinal degenerations. Journal of Comparative Neurology, 2008, 511, 724-735.	1.6	18
90	Retinal TrkB receptors regulate neural development in the inner, but not outer, retina. Molecular and Cellular Neurosciences, 2008, 38, 431-443.	2.2	53

#	Article	IF	CITATIONS
91	Vesicular Glutamate Transporter 1 Is Required for Photoreceptor Synaptic Signaling But Not For Intrinsic Visual Functions. Journal of Neuroscience, 2007, 27, 7245-7255.	3.6	45
92	Rapid and Stable Knockdown of an Endogenous Gene in Retinal Pigment Epithelium. Human Gene Therapy, 2007, 18, 871-880.	2.7	22
93	Molecular and Cellular Alterations Induced by Sustained Expression of Ciliary Neurotrophic Factor in a Mouse Model of Retinitis Pigmentosa. , 2007, 48, 1389.		70
94	Neurotrophic Factors Minimize the Retinal Toxicity of Verteporfin Photodynamic Therapy., 2007, 48, 430.		26
95	High-Resolution Imaging with Adaptive Optics in Patients with Inherited Retinal Degeneration., 2007, 48, 3283.		241
96	High-Resolution In Vivo Imaging of the RPE Mosaic in Eyes with Retinal Disease., 2007, 48, 2297.		170
97	Intraocular CNTF Reduces Vision in Normal Rats in a Dose-Dependent Manner. , 2007, 48, 5756.		74
98	Correlation Between Clinical Suspicion and Polymerase Chain Reaction Verification of Infectious Vitritis. American Journal of Ophthalmology, 2006, 141, 584-585.	3.3	8
99	Scotopic Visual Signaling in the Mouse Retina Is Modulated by High-Affinity Plasma Membrane Calcium Extrusion. Journal of Neuroscience, 2006, 26, 7201-7211.	3.6	41
100	Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Human Molecular Genetics, 2005, 14, 49-57.	2.9	120
101	Bilateral endogenous Scedosporium prolificans endophthalmitis after lung transplantation. American Journal of Ophthalmology, 2005, 139, 370-373.	3.3	59
102	BDNF Reduces the Retinal Toxicity of Verteporfin Photodynamic Therapy., 2004, 45, 4190.		31
103	Detection of localized retinal dysfunction in a choroideremia carrier. American Journal of Ophthalmology, 2004, 137, 189-191.	3.3	23
104	Acute zonal occult outer retinopathy in a patient with graft-versus-host disease. American Journal of Ophthalmology, 2004, 138, 1058-1060.	3.3	16
105	An RCS-Like Retinal Dystrophy Phenotype inMerKnockout Mice. , 2003, 44, 826.		227
106	A Report of Thirteen Patients. Retina, 2003, 23, 348-353.	1.7	23
107	Corneal Toxicity of Intraocular Hyaluronidase. Journal of Ocular Pharmacology and Therapeutics, 2002, 18, 89-97.	1.4	10
108	Macular Pigment and Lutein Supplementation in Choroideremia. Experimental Eye Research, 2002, 74, 371-381.	2.6	96

#	Article	IF	CITATIONS
109	Effects of Adeno-associated Virus-vectored Ciliary Neurotrophic Factor on Retinal Structure and Function in Mice with a P216L rds/peripherin Mutation. Experimental Eye Research, 2002, 74, 719-735.	2.6	267
110	Saxitoxin. Cornea, 2001, 20, 639-642.	1.7	13
111	Experimental study of tetrodotoxin, a long-acting topical anesthetic. American Journal of Ophthalmology, 1998, 125, 481-487.	3.3	26
112	Experimental Use of Tetrodotoxin for Corneal Pain After Excimer Laser Keratectomy. Cornea, 1998, 17, 196-199.	1.7	11