Robert Wojciechowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6985713/publications.pdf

Version: 2024-02-01

			159585	223800
ı	57	3,921	30	46
	papers	citations	h-index	g-index
	59	59	59	3852
	37	37	37	3032
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A genome-wide analysis of 340 318 participants identifies four novel loci associated with the age of first spectacle wear. Human Molecular Genetics, 2022, , .	2.9	O
2	Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. JAMA Ophthalmology, 2021, 139, 601.	2.5	22
3	Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nature Genetics, 2020, 52, 401-407.	21.4	180
4	Faster Sensitivity Loss around Dense Scotomas than for Overall Macular Sensitivity in Stargardt Disease: ProgStar Report No. 14. American Journal of Ophthalmology, 2020, 216, 219-225.	3.3	20
5	Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nature Genetics, 2020, 52, 160-166.	21.4	192
6	Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. British Journal of Ophthalmology, 2019, 103, 390-397.	3.9	45
7	INVOLVEMENT OF MULTIPLE MOLECULAR PATHWAYS IN THE GENETICS OF OCULAR REFRACTION AND MYOPIA. Retina, 2018, 38, 91-101.	1.7	25
8	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	21.4	239
9	Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nature Genetics, 2018, 50, 778-782.	21.4	214
10	Longitudinal Changes of Fixation Location and Stability Within 12 Months in Stargardt Disease: ProgStar Report No. 12. American Journal of Ophthalmology, 2018, 193, 54-61.	3.3	24
11	CYP2D6 basic genotyping as a potential tool to improve antiemetic efficacy of ondansetron in prophylaxis of postoperative nausea and vomiting. Advances in Clinical and Experimental Medicine, 2018, 27, 1499-1503.	1.4	15
12	New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics Human Molecular Genetics, 2017, 26, ddw399.	2.9	120
13	Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. International Journal of Epidemiology, 2017, 46, 1882-1890.	1.9	47
14	Assessing the Genetic Predisposition of Education on Myopia: A Mendelian Randomization Study. Genetic Epidemiology, 2016, 40, 66-72.	1.3	56
15	Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 2016, 7, 11008.	12.8	104
16	Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 2016, 6, 25853.	3.3	80
17	Next-Generation Sequencing in the Clinical Diagnosis of Retinitis Pigmentosa. , 2015, 56, 2183.		1
18	Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics, 2015, 134, 131-146.	3.8	24

#	Article	IF	Citations
19	APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genetics, 2015, 11, e1005432.	3.5	77
20	Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci. PLoS ONE, 2014, 9, e107110.	2.5	40
21	Common Mechanisms Underlying Refractive Error Identified in Functional Analysis of Gene Lists From Genome-Wide Association Study Results in 2 European British Cohorts. JAMA Ophthalmology, 2014, 132, 50.	2.5	23
22	Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies. Human Molecular Genetics, 2014, 23, 546-554.	2.9	63
23	A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort. Human Molecular Genetics, 2014, 23, 3343-3348.	2.9	39
24	Family History Is a Strong Risk Factor for Prevalent Angle Closure in a South Indian Population. Ophthalmology, 2014, 121, 2091-2097.	5.2	57
25	Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nature Genetics, 2014, 46, 1126-1130.	21.4	212
26	Genome-Wide Association Studies of Refractive Error and Myopia, Lessons Learned, and Implications for the Future., 2014, 55, 3344.		65
27	Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Human Molecular Genetics, 2013, 22, 2754-2764.	2.9	60
28	Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error. American Journal of Human Genetics, 2013, 93, 264-277.	6.2	139
29	Matrix Metalloproteinases and Educational Attainment in Refractive Error. Ophthalmology, 2013, 120, 298-305.	5.2	38
30	Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics, 2013, 45, 314-318.	21.4	398
31	Focusing In on the Complex Genetics of Myopia. PLoS Genetics, 2013, 9, e1003442.	3.5	58
32	Association Study in a South Indian Population Supports rs1015213 as a Risk Factor for Primary Angle Closure. , 2013, 54, 5624.		23
33	Regional replication of association with refractive error on 15q14 and 15q25 in the Age-Related Eye Disease Study cohort. Molecular Vision, 2013, 19, 2173-86.	1.1	12
34	Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Human Genetics, 2012, 131, 1467-1480.	3.8	67
35	Power Vector Analysis of Refractive, Corneal, and Internal Astigmatism in an Elderly Chinese Population: The Shihpai Eye Study. , 2011, 52, 9651.		58
36	Nature and nurture: the complex genetics of myopia and refractive error. Clinical Genetics, 2011, 79, 301-320.	2.0	253

#	Article	IF	CITATIONS
37	Old lessons learned anew: family-based methods for detecting genes responsible for quantitative and qualitative traits in the Genetic Analysis Workshop 17 mini-exome sequence data. BMC Proceedings, 2011, 5, S83.	1.6	10
38	Dissecting the genetic heterogeneity of myopia susceptibility in an Ashkenazi Jewish population using ordered subset analysis. Molecular Vision, 2011, 17, 1641-51.	1.1	3
39	Association of Matrix Metalloproteinase Gene Polymorphisms with Refractive Error in Amish and Ashkenazi Families., 2010, 51, 4989.		34
40	Structure–Function Correlations Using Scanning Laser Polarimetry in Primary Angle-Closure Glaucoma and Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2010, 149, 817-825.e1.	3.3	16
41	Punctal occlusion for dry eye syndrome. , 2010, , CD006775.		32
42	Genomewide Linkage Scans for Ocular Refraction and Meta-analysis of Four Populations in the Myopia Family Study. , 2009, 50, 2024.		30
43	Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proceedings, 2009, 3, S64.	1.6	21
44	Genome-wide Scan of African-American and White Families for Linkage to Myopia. American Journal of Ophthalmology, 2009, 147, 512-517.e2.	3.3	30
45	Fine-mapping of candidate region in Amish and Ashkenazi families confirms linkage of refractive error to a QTL on 1p34-p36. Molecular Vision, 2009, 15, 1398-406.	1.1	10
46	Genomewide scan of ocular refraction in Africanâ€American families shows significant linkage to chromosome 7p15. Genetic Epidemiology, 2008, 32, 454-463.	1.3	51
47	Correction of Moderate Myopia Is Associated with Improvement in Self-Reported Visual Functioning among Mexican School-Aged Children. , 2007, 48, 4949.		49
48	Heritability and Familial Aggregation of Refractive Error in the Old Order Amish., 2007, 48, 4002.		47
49	Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1p36. Human Genetics, 2006, 119, 389-399.	3.8	84
50	Investigation of altering single-nucleotide polymorphism density on the power to detect trait loci and frequency of false positive in nonparametric linkage analyses of qualitative traits. BMC Genetics, 2005, 6, S20.	2.7	5
51	Heritability of Refractive Error and Familial Aggregation of Myopia in an Elderly American Population. , 2005, 46, 1588.		66
52	Cortical, but not posterior subcapsular, cataract shows significant familial aggregation in an older population after adjustment for possible shared environmental factors. Ophthalmology, 2005, 112, 73-77.	5.2	35
53	Familial aggregation of hyperopia in an elderly population of siblings in Salisbury, Maryland. Ophthalmology, 2005, 112, 78-83.	5.2	22
54	Determinants and Heritability of Intraocular Pressure and Cup-to-Disc Ratio in a Defined Older Population. Ophthalmology, 2005, 112, 1186-1191.	5.2	93

#	Article	IF	CITATIONS
55	Nuclear Cataract Shows Significant Familial Aggregation in an Older Population after Adjustment for Possible Shared Environmental Factors., 2004, 45, 2182.		40
56	Age, gender, biometry, refractive error, and the anterior chamber angle among Alaskan Eskimos. Ophthalmology, 2003, 110, 365-375.	5.2	104
57	Topography of the Age-Related Decline in Motion Sensitivity. Optometry and Vision Science, 1995, 72, 67-74.	1.2	41