Yu-Shan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/698536/publications.pdf

Version: 2024-02-01

		236925	144013
57	3,347	25	57
papers	citations	h-index	g-index
61	61	61	4242
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The endoplasmic reticulum proteostasis network profoundly shapes the protein sequence space accessible to HIV envelope. PLoS Biology, 2022, 20, e3001569.	5. 6	7
2	Cyclic peptides: backbone rigidification and capability of mimicking motifs at protein–protein interfaces. Physical Chemistry Chemical Physics, 2021, 23, 607-616.	2.8	10
3	Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chemical Reviews, 2021, 121, 2292-2324.	47.7	45
4	Visualizing and Understanding Ordered Surface Phases during the Ullmann Coupling Reaction. Journal of Physical Chemistry C, 2021, 125, 7675-7685.	3.1	2
5	Stapled \hat{I}^2 -Hairpins Featuring 4-Mercaptoproline. Journal of the American Chemical Society, 2021, 143, 15039-15044.	13.7	11
6	Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL. Chemical Science, 2021, 12, 9694-9703.	7.4	20
7	CATBOSS: Cluster Analysis of Trajectories Based on Segment Splitting. Journal of Chemical Information and Modeling, 2021, 61, 5066-5081.	5.4	9
8	N-Amination Converts Amyloidogenic Tau Peptides into Soluble Antagonists of Cellular Seeding. ACS Chemical Neuroscience, 2021, 12, 3928-3938.	3 . 5	7
9	Structure prediction of cyclic peptides by molecular dynamics + machine learning. Chemical Science, 2021, 12, 14927-14936.	7.4	24
10	Controlling Molecular Switching via Chemical Functionality: Ethyl vs Methoxy Rotors. Journal of Physical Chemistry C, 2019, 123, 23738-23746.	3.1	9
11	Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118458.	4.1	16
12	The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation. Frontiers in Pharmacology, 2019, 10, 1392.	3.5	11
13	\hat{l}^2 -Branched Amino Acids Stabilize Specific Conformations of Cyclic Hexapeptides. Biophysical Journal, 2019, 116, 433-444.	0.5	11
14	Designing Well-Structured Cyclic Pentapeptides Based on Sequence–Structure Relationships. Journal of Physical Chemistry B, 2018, 122, 3908-3919.	2.6	20
15	Understanding and designing headâ€ŧoâ€ŧail cyclic peptides. Biopolymers, 2018, 109, e23113.	2.4	17
16	Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule. FASEB Journal, 2018, 32, 1778-1793.	0.5	22
17	Enzymatic Phosphorylation of Ser in a Type I Collagen Peptide. Biophysical Journal, 2018, 115, 2327-2335.	0.5	13
18	Destabilized adaptive influenza variants critical for innate immune system escape are potentiated by host chaperones. PLoS Biology, 2018, 16, e3000008.	5.6	28

#	Article	IF	CITATIONS
19	Effects of flexibility of the $\hat{l}\pm 2$ chain of type I collagen on collagenase cleavage. Journal of Structural Biology, 2018, 203, 247-254.	2.8	14
20	Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding. Journal of Structural Biology, 2018, 203, 255-262.	2.8	26
21	Light-responsive bicyclic peptides. Organic and Biomolecular Chemistry, 2018, 16, 7588-7594.	2.8	23
22	Enhanced ER proteostasis and temperature differentially impact the mutational tolerance of influenza hemagglutinin. ELife, 2018, 7, .	6.0	25
23	Mapping the sequence–structure relationships of simple cyclic hexapeptides. Physical Chemistry Chemical Physics, 2017, 19, 3315-3324.	2.8	20
24	Toward accurately modeling N-methylated cyclic peptides. Physical Chemistry Chemical Physics, 2017, 19, 5377-5388.	2.8	19
25	Diversity-Oriented Stapling Yields Intrinsically Cell-Penetrant Inducers of Autophagy. Journal of the American Chemical Society, 2017, 139, 7792-7802.	13.7	121
26	Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry, 2017, 56, 5720-5725.	2.5	10
27	Predictions for \hat{l}_{\pm} -Helical Glycopeptide Design from Structural Bioinformatics Analysis. Journal of Chemical Information and Modeling, 2017, 57, 2598-2611.	5.4	2
28	Consequences of Depsipeptide Substitution on the ClpP Activation Activity of Antibacterial Acyldepsipeptides. ACS Medicinal Chemistry Letters, 2017, 8, 1171-1176.	2.8	11
29	Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays. Nature Communications, 2017, 8, 16057.	12.8	21
30	Host proteostasis modulates influenza evolution. ELife, 2017, 6, .	6.0	34
31	Insights into How Cyclic Peptides Switch Conformations. Journal of Chemical Theory and Computation, 2016, 12, 2480-2488.	5.3	47
32	Computational methods to design cyclic peptides. Current Opinion in Chemical Biology, 2016, 34, 95-102.	6.1	24
33	<scp>d</scp> -Amino Acid Scan of Two Small Proteins. Journal of the American Chemical Society, 2016, 138, 12099-12111.	13.7	30
34	Mapping the Effect of Gly Mutations in Collagen on $\hat{l}\pm2\hat{l}^21$ Integrin Binding. Journal of Biological Chemistry, 2016, 291, 19196-19207.	3.4	21
35	Consequences of Glycine Mutations in the Fibronectin-binding Sequence of Collagen. Journal of Biological Chemistry, 2016, 291, 27073-27086.	3.4	19
36	Collagen interactions: Drug design and delivery. Advanced Drug Delivery Reviews, 2016, 97, 69-84.	13.7	195

#	Article	IF	CITATIONS
37	Toward structure prediction of cyclic peptides. Physical Chemistry Chemical Physics, 2015, 17, 4210-4219.	2.8	50
38	A Molecular Interpretation of 2D IR Protein Folding Experiments with Markov State Models. Biophysical Journal, 2014, 106, 1359-1370.	0.5	48
39	A bicyclic peptide scaffold promotes phosphotyrosine mimicry and cellular uptake. Bioorganic and Medicinal Chemistry, 2014, 22, 6387-6391.	3.0	30
40	Convergent diversity-oriented side-chain macrocyclization scan for unprotected polypeptides. Organic and Biomolecular Chemistry, 2014, 12, 566-573.	2.8	73
41	A Perfluoroaryl-Cysteine S _N Ar Chemistry Approach to Unprotected Peptide Stapling. Journal of the American Chemical Society, 2013, 135, 5946-5949.	13.7	389
42	Simple few-state models reveal hidden complexity in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17807-17813.	7.1	151
43	Effects of Familial Mutations on the Monomer Structure of AÎ ² 42. Biophysical Journal, 2012, 103, L47-L49.	0.5	47
44	Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements. Journal of Chemical Theory and Computation, 2012, 8, 1409-1414.	5.3	347
45	Investigating How Peptide Length and a Pathogenic Mutation Modify the Structural Ensemble of Amyloid Beta Monomer. Biophysical Journal, 2012, 102, 315-324.	0.5	114
46	Robust three-body water simulation model. Journal of Chemical Physics, 2011, 134, 184501.	3.0	115
47	2D IR Line Shapes Probe Ovispirin Peptide Conformation and Depth in Lipid Bilayers. Journal of the American Chemical Society, 2010, 132, 2832-2838.	13.7	90
48	Solution Structures of Rat Amylin Peptide: Simulation, Theory, and Experiment. Biophysical Journal, 2010, 98, 443-451.	0.5	51
49	On the calculation of rotational anisotropy decay, as measured by ultrafast polarization-resolved vibrational pump-probe experiments. Journal of Chemical Physics, 2010, 132, 174505.	3.0	63
50	Water structure, dynamics, and vibrational spectroscopy in sodium bromide solutions. Journal of Chemical Physics, 2009, 131, 144511.	3.0	135
51	Gating Mechanism of the Influenza A M2 Channel Revealed by 1D and 2D IR Spectroscopies. Structure, 2009, 17, 247-254.	3.3	116
52	Empirical Amide I Vibrational Frequency Map: Application to 2D-IR Line Shapes for Isotope-Edited Membrane Peptide Bundles. Journal of Physical Chemistry B, 2009, 113, 592-602.	2.6	129
53	Vibrational Spectroscopy and Dynamics of Water Confined inside Reverse Micelles. Journal of Physical Chemistry B, 2009, 113, 15017-15028.	2.6	134
54	Water inertial reorientation: Hydrogen bond strength and the angular potential. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5295-5300.	7.1	181

Yu-Shan Lin

#	Article	IF	CITATIONS
55	Vibrational Energy Relaxation of the Bend Fundamental of Dilute Water in Liquid Chloroform and <i>d</i> -Chloroform. Journal of Physical Chemistry B, 2008, 112, 390-398.	2.6	14
56	Design and synthesis of intramolecular hydrogen bonding systems. Their application in metal cation sensing based on excited-state proton transfer reaction. Tetrahedron, 2004, 60, 11861-11868.	1.9	26
57	Competitive intramolecular hydrogen bonding formation and excited-state proton transfer reaction in 1-[(diethylamino)-methyl]-2-hydroxy-3-naphthaldehyde. Chemical Physics Letters, 2004, 384, 203-209.	2.6	23