Hiroyuki Hosokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6985182/publications.pdf

Version: 2024-02-01

63 papers 3,840 citations

147801 31 h-index 58 g-index

66 all docs 66 docs citations

66 times ranked 6347 citing authors

#	Article	IF	CITATIONS
1	Dll1 Can Function as a Ligand of Notch1 and Notch2 in the Thymic Epithelium. Frontiers in Immunology, 2022, 13, 852427.	4.8	3
2	How transcription factors drive choice of the T cell fate. Nature Reviews Immunology, 2021, 21, 162-176.	22.7	142
3	AMBRA1 controls antigen-driven activation and proliferation of naive T cells. International Immunology, 2021, 33, 107-118.	4.0	3
4	Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,118$, .	7.1	33
5	Transcription factors regulate early TÂcell development via redeployment of other factors. BioEssays, 2021, 43, 2000345.	2.5	5
6	Stage-specific action of Runx1 and GATA3 controls silencing of PU.1 expression in mouse pro–T cells. Journal of Experimental Medicine, 2021, 218, .	8.5	11
7	Notch signaling supports the appearance of follicular helper T cells in the Peyer's patches concomitantly with the reduction of regulatory T cells. International Immunology, 2021, 33, 469-478.	4.0	4
8	LMO2 is essential to maintain the ability of progenitors to differentiate into T-cell lineage in mice. ELife, $2021,10,.$	6.0	5
9	Cell type–specific actions of Bcl11b in early T-lineage and group 2 innate lymphoid cells. Journal of Experimental Medicine, 2020, 217, .	8.5	45
10	Notch2 complements Notch1 to mediate inductive signaling that initiates early T cell development. Journal of Cell Biology, 2020, 219, .	5.2	24
11	Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Frontiers in Immunology, 2019, 10, 228.	4.8	58
12	Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028621.	5 . 5	64
13	Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16. Nature Immunology, 2018, 19, 1427-1440.	14.5	83
14	Role of leukotriene B4 12-hydroxydehydrogenase in α-galactosylceramide-pulsed dendritic cell therapy for non-small cell lung cancer. Biochemical and Biophysical Research Communications, 2018, 506, 27-32.	2.1	0
15	Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1). Genome Research, 2018, 28, 1508-1519.	5.5	56
16	Regulation of genomic activity in T-lymphocyte development by dynamic transcription factor ensembles. Experimental Hematology, 2018, 64, S30-S31.	0.4	0
17	Transcription Factor PU.1 Represses and Activates Gene Expression in Early T Cells by Redirecting Partner Transcription Factor Binding. Immunity, 2018, 48, 1119-1134.e7.	14.3	83
18	Th2 Cells in Health and Disease. Annual Review of Immunology, 2017, 35, 53-84.	21.8	283

#	Article	IF	CITATIONS
19	Bcl11b and combinatorial resolution of cell fate in the T-cell gene regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5800-5807.	7.1	75
20	Establishment of a new threeâ€dimensional human epidermal model reconstructed from plucked hair follicleâ€derived keratinocytes. Experimental Dermatology, 2016, 25, 903-906.	2.9	9
21	Akt1-mediated Gata3 phosphorylation controls the repression of IFN \hat{I}^3 in memory-type Th2 cells. Nature Communications, 2016, 7, 11289.	12.8	31
22	Myosin light chains 9 and 12 are functional ligands for CD69 that regulate airway inflammation. Science Immunology, 2016, 1, eaaf9154.	11.9	61
23	Methylation of Gata3 Protein at Arg-261 Regulates Transactivation of the II5 Gene in T Helper 2 Cells. Journal of Biological Chemistry, 2015, 290, 13095-13103.	3.4	28
24	Histone acetylation mediated by Brd1 is crucial for Cd8 gene activation during early thymocyte development. Nature Communications, 2014, 5, 5872.	12.8	33
25	Nanoparticulation of BCG-CWS for application to bladder cancer therapy. Journal of Controlled Release, 2014, 176, 44-53.	9.9	66
26	Histone Acetylation Mediated by Brd1 Is Crucial for Cd8 Gene Activation during Early Thymocyte Development. Blood, 2014, 124, 1576-1576.	1.4	0
27	The Polycomb Protein Ezh2 Regulates Differentiation and Plasticity of CD4+ T Helper Type 1 and Type 2 Cells. Immunity, 2013, 39, 819-832.	14.3	260
28	A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2013, 132, 151-158.	2.9	124
29	Gata3/Ruvbl2 complex regulates T helper 2 cell proliferation via repression of Cdkn2c expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18626-18631.	7.1	36
30	Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4691-4696.	7.1	78
31	Genome-Wide Gene Expression Profiling Revealed a Critical Role for GATA3 in the Maintenance of the Th2 Cell Identity. PLoS ONE, 2013, 8, e66468.	2.5	21
32	Bmi1 facilitates primitive endoderm formation by stabilizing Gata6 during early mouse development. Genes and Development, 2012, 26, 1445-1458.	5.9	21
33	Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7409-7414.	7.1	121
34	<i>Murine Schnurri-2</i> controls natural killer cell function and lymphoma development. Leukemia and Lymphoma, 2012, 53, 479-486.	1.3	6
35	The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF- \hat{l}^2 and suppresses TH2 differentiation. Nature Immunology, 2012, 13, 778-786.	14.5	157
36	Sublingual administration of Lactobacillus paracasei KW3110 inhibits Th2-dependent allergic responses via upregulation of PD-L2 on dendritic cells. Clinical Immunology, 2012, 143, 170-179.	3.2	16

#	Article	IF	CITATIONS
37	Eomesodermin Controls Interleukin-5 Production in Memory T Helper 2 Cells through Inhibition of Activity of the Transcription Factor GATA3. Immunity, 2011, 35, 733-745.	14.3	103
38	Genome-Wide Analysis Reveals Unique Regulation of Transcription of Th2-Specific Genes by GATA3. Journal of Immunology, 2011, 186, 6378-6389.	0.8	53
39	<i>Polycomb</i> Group Gene Product Ring1B Regulates Th2-Driven Airway Inflammation through the Inhibition of Bim-Mediated Apoptosis of Effector Th2 Cells in the Lung. Journal of Immunology, 2010, 184, 4510-4520.	0.8	22
40	STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. Journal of Experimental Medicine, 2010, 207, 2493-2506.	8.5	87
41	Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7461-7466.	7.1	548
42	STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. Journal of Cell Biology, 2010, 191, i8-i8.	5.2	0
43	Enhanced Th2 Cell Differentiation and Allergen-Induced Airway Inflammation in <i>Zfp35</i> -Deficient Mice. Journal of Immunology, 2009, 183, 5388-5396.	0.8	9
44	cAMP activation by PACAP/VIP stimulates ILâ€6 release and inhibits osteoblastic differentiation through VPAC2 receptor in osteoblastic MC3T3 cells. Journal of Cellular Physiology, 2009, 221, 75-83.	4.1	26
45	CD69 Controls the Pathogenesis of Allergic Airway Inflammation. Journal of Immunology, 2009, 183, 8203-8215.	0.8	68
46	Lymphoid enhancer factor interacts with GATAâ€3 and controls its function in T helper type 2 cells. Immunology, 2008, 125, 377-386.	4.4	27
47	Human Th1 differentiation induced by lipoarabinomannan/lipomannan from Mycobacterium bovis BCG Tokyo-172. International Immunology, 2008, 20, 849-860.	4.0	19
48	Bmi1 regulates memory CD4 T cell survival via repression of the <i>Noxa</i> gene. Journal of Experimental Medicine, 2008, 205, 1109-1120.	8.5	102
49	Gfi1-mediated Stabilization of GATA3 Protein Is Required for Th2 Cell Differentiation. Journal of Biological Chemistry, 2008, 283, 28216-28225.	3.4	47
50	Bmi1 regulates memory CD4 T cell survival via repression of theNoxagene. Journal of Cell Biology, 2008, 181, i5-i5.	5.2	0
51	NF-AT-Mediated Expression of TGF-β1 in Tolerant T Cells. Journal of Immunology, 2007, 178, 3067-3075.	0.8	13
52	Chromatin remodeling at the Th2 cytokine gene loci in human type 2 helper T cells. Molecular Immunology, 2007, 44, 2249-2256.	2.2	31
53	Crucial Role of MLL for the Maintenance of Memory T Helper Type 2 Cell Responses. Immunity, 2006, 24, 611-622.	14.3	134

S3e1-3 Epigenetic regulation of memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features in Immune) Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 rg BT_{0.1}/Overlock 10 Tf 50 memory Th2 cell generation (S3-e1: "Dynamic Features") Tj ETQq0.00 r

#	Article	IF	CITATION
55	Critical YxKxHxxxRP Motif in the C-Terminal Region of GATA3 for Its DNA Binding and Function. Journal of Immunology, 2006, 177, 5801-5810.	0.8	23
56	Regulation of Th2 Cell Development by <i>Polycomb</i> Group Gene <i>bmi-1</i> through the Stabilization of GATA3. Journal of Immunology, 2006, 177, 7656-7664.	0.8	52
57	Impaired GATA3-Dependent Chromatin Remodeling and Th2 Cell Differentiation Leading to Attenuated Allergic Airway Inflammation in Aging Mice. Journal of Immunology, 2006, 176, 2546-2554.	0.8	23
58	Regulation of T helper type 2 cell differentiation by murine Schnurri-2. Journal of Experimental Medicine, 2005, 201, 397-408.	8.5	56
59	STAT6-Dependent Differentiation and Production of IL-5 and IL-13 in Murine NK2 Cells. Journal of Immunology, 2004, 173, 4967-4975.	0.8	39
60	Essential Role of GATA3 for the Maintenance of Type 2 Helper T (Th2) Cytokine Production and Chromatin Remodeling at the Th2 Cytokine Gene Loci. Journal of Biological Chemistry, 2004, 279, 26983-26990.	3.4	133
61	CD8 T Cell-Specific Downregulation of Histone Hyperacetylation and Gene Activation of the IL-4 Gene Locus by ROG, Repressor of GATA. Immunity, 2003, 19, 281-294.	14.3	79
62	CD69â€null mice protected from arthritis induced with antiâ€type II collagen antibodies. International Immunology, 2003, 15, 987-992.	4.0	59
63	DNA vaccine using invariant chain gene for delivery of CD4+ T cell epitope peptide derived from Japanese cedar pollen allergen inhibits allergen-specific IgE response. European Journal of Immunology, 2002, 32, 1631.	2.9	28