List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6983869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined Inhibition of SHP2 and CXCR1/2 Promotes Antitumor T-cell Response in NSCLC. Cancer Discovery, 2022, 12, 47-61.	9.4	58
2	Signal transfer in human protein tyrosine phosphatase PTP1B from allosteric inhibitor P00058. Journal of Biomolecular Structure and Dynamics, 2022, 40, 13823-13832.	3.5	4
3	MMD-associated <i>RNF213</i> SNPs encode dominant-negative alleles that globally impair ubiquitylation. Life Science Alliance, 2022, 5, e202000807.	2.8	7
4	Ontogeny and Vulnerabilities of Drug-Tolerant Persisters in HER2+ Breast Cancer. Cancer Discovery, 2022, 12, 1022-1045.	9.4	43
5	Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy. Cancer Discovery, 2021, 11, 384-407.	9.4	64
6	Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer. Cancer Discovery, 2021, 11, 362-383.	9.4	50
7	SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations. Science Translational Medicine, 2021, 13, .	12.4	26
8	Computational modeling of ovarian cancer dynamics suggests optimal strategies for therapy and screening. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
9	SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. Journal of Experimental Medicine, 2021, 218, .	8.5	138
10	The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Reports, 2020, 30, 215-228.e5.	6.4	50
11	Distinct fibroblast functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. Journal of Experimental Medicine, 2020, 217, .	8.5	51
12	Quantitative phosphoproteomic analysis reveals involvement of PD-1 in multiple T cell functions. Journal of Biological Chemistry, 2020, 295, 18036-18050.	3.4	16
13	U.S. Biomedical Research Needs More Immigrant Scientists, Not Fewer!. Cancer Cell, 2020, 38, 308.	16.8	2
14	Hyperactive CDK2 Activity in Basal-like Breast Cancer Imposes a Genome Integrity Liability that Can Be Exploited by Targeting DNA Polymerase Îμ. Molecular Cell, 2020, 80, 682-698.e7.	9.7	25
15	Piecing Together a Broken Tumor Suppressor Phosphatase for Cancer Therapy. Cell, 2020, 181, 514-517.	28.9	23
16	Raymond L. Erikson (1936–2020). Cell, 2020, 181, 961-963.	28.9	0
17	Activated Thiol Sepharoseâ€based proteomic approach to quantify reversible protein oxidation. FASEB Journal, 2019, 33, 12336-12347	0.5	3
18	The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning. PLoS Genetics, 2019, 15, e1008108.	3.5	22

#	Article	IF	CITATIONS
19	N-Glycoproteomics of Patient-Derived Xenografts: A Strategy to Discover Tumor-Associated Proteins in High-Grade Serous Ovarian Cancer. Cell Systems, 2019, 8, 345-351.e4.	6.2	31
20	A Genomically Characterized Collection of High-Grade Serous Ovarian Cancer Xenografts for Preclinical Testing. American Journal of Pathology, 2018, 188, 1120-1131.	3.8	23
21	SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity. Bone Research, 2018, 6, 12.	11.4	33
22	Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E468-E477.	7.1	72
23	Vitamin C in Stem Cell Reprogramming and Cancer. Trends in Cell Biology, 2018, 28, 698-708.	7.9	139
24	Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner. Science Signaling, 2018, 11, .	3.6	27
25	A ERK/RSKâ€mediated negative feedback loop regulates M SF–evoked PI3K/AKT activation in macrophages. FASEB Journal, 2018, 32, 875-887.	0.5	31
26	Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia. Cancer Research, 2018, 78, 75-87.	0.9	39
27	Pathologic Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma. Cancer Research, 2018, 78, 6539-6548.	0.9	12
28	SHP2 Inhibition Prevents Adaptive Resistance to MEK Inhibitors in Multiple Cancer Models. Cancer Discovery, 2018, 8, 1237-1249.	9.4	216
29	Offâ€ŧarget inhibition by active siteâ€ŧargeting <scp>SHP</scp> 2 inhibitors. FEBS Open Bio, 2018, 8, 1405-1411.	2.3	44
30	Interrogation of Functional Cell-Surface Markers Identifies CD151 Dependency in High-Grade Serous Ovarian Cancer. Cell Reports, 2017, 18, 2343-2358.	6.4	38
31	Cellular interplay via cytokine hierarchy causes pathological cardiac hypertrophy in RAF1-mutant Noonan syndrome. Nature Communications, 2017, 8, 15518.	12.8	23
32	Critical Role for GAB2 in Neuroblastoma Pathogenesis through the Promotion of SHP2/MYCN Cooperation. Cell Reports, 2017, 18, 2932-2942.	6.4	28
33	A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Molecular Cell, 2017, 65, 347-360.	9.7	123
34	Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nature Communications, 2017, 8, 466.	12.8	43
35	Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell, 2017, 170, 1079-1095.e20.	28.9	522
36	Biochemical Classification of Disease-associated Mutants of RAS-like Protein Expressed in Many Tissues (RIT1). Journal of Biological Chemistry, 2016, 291, 15641-15652.	3.4	14

#	Article	IF	CITATIONS
37	Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1. Blood, 2016, 127, 1803-1813.	1.4	24
38	Sticking It to Cancer with Molecular Glue for SHP2. Cancer Cell, 2016, 30, 194-196.	16.8	72
39	Role of PTPN11 (SHP2) in Cancer. , 2016, , 115-143.		11
40	PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nature Cell Biology, 2016, 18, 803-813.	10.3	95
41	Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance. Cell, 2016, 164, 293-309.	28.9	399
42	Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles. Journal of Experimental Medicine, 2016, 213, 25-34.	8.5	25
43	Gain-of-function mutations of <i>Ptpn11</i> (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 984-989.	7.1	41
44	Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome. Human Mutation, 2015, 36, 1080-1087.	2.5	67
45	Leptin and Insulin Act on POMC Neurons to Promote the Browning of White Fat. Cell, 2015, 160, 88-104.	28.9	308
46	Clinical Utility of Patient-Derived Xenografts to Determine Biomarkers of Prognosis and Map Resistance Pathways in <i>EGFR</i> -Mutant Lung Adenocarcinoma. Journal of Clinical Oncology, 2015, 33, 2472-2480.	1.6	94
47	Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6625-6630.	7.1	191
48	Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11473-11478.	7.1	158
49	Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). BMC Structural Biology, 2014, 14, 10.	2.3	55
50	Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nature Neuroscience, 2014, 17, 1736-1743.	14.8	120
51	New pROSpects for PTP1B: micro-Managing Oncogene-Induced Senescence. Molecular Cell, 2014, 55, 651-653.	9.7	0
52	The RhoGEF GEF-H1 Is Required for Oncogenic RAS Signaling via KSR-1. Cancer Cell, 2014, 25, 181-195.	16.8	76
53	Hepatic Oxidative Stress Promotes Insulin-STAT-5 Signaling and Obesity by Inactivating Protein Tyrosine Phosphatase N2. Cell Metabolism, 2014, 20, 85-102.	16.2	83
54	Leukemogenic Ptpn11 Allele Causes Defective Erythropoiesis in Mice. PLoS ONE, 2014, 9, e109682.	2.5	8

#	Article	IF	CITATIONS
55	Methods to monitor classical proteinâ€ŧyrosine phosphatase oxidation. FEBS Journal, 2013, 280, 459-475.	4.7	38
56	Antagonism between binding site affinity and conformational dynamics tunes alternative cis-interactions within Shp2. Nature Communications, 2013, 4, 2037.	12.8	38
57	Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature, 2013, 499, 491-495.	27.8	190
58	From an orphan disease to a generalized molecular mechanism. Rare Diseases (Austin, Tex), 2013, 1, e26657.	1.8	10
59	Megakaryocyte-specific deletion of the protein-tyrosine phosphatases Shp1 and Shp2 causes abnormal megakaryocyte development, platelet production, and function. Blood, 2013, 121, 4205-4220.	1.4	74
60	Redox Regulation of PTPs in Metabolism: Focus on Assays. , 2013, , 1-26.		0
61	Increased BRAF Heterodimerization Is the Common Pathogenic Mechanism for Noonan Syndrome-Associated <i>RAF1</i> Mutants. Molecular and Cellular Biology, 2012, 32, 3872-3890.	2.3	35
62	Hepatocyte-Specific <i>Ptpn6</i> Deletion Protects From Obesity-Linked Hepatic Insulin Resistance. Diabetes, 2012, 61, 1949-1958.	0.6	34
63	Tyrosyl phosphorylation toggles a Runx1 switch. Genes and Development, 2012, 26, 1520-1526.	5.9	4
64	Essential Gene Profiles in Breast, Pancreatic, and Ovarian Cancer Cells. Cancer Discovery, 2012, 2, 172-189.	9.4	276
65	The Signaling Adaptor Gab1 Regulates Cell Polarity by Acting as a PAR Protein Scaffold. Molecular Cell, 2012, 47, 469-483.	9.7	33
66	Substrate Specificity of Protein Tyrosine Phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry, 2011, 50, 2339-2356.	2.5	87
67	Global Proteomic Assessment of the Classical Protein-Tyrosine Phosphatome and "Redoxome― Cell, 2011, 146, 826-840.	28.9	156
68	SHP2 Tyrosine Phosphatase Converts Parafibromin/Cdc73 from a Tumor Suppressor to an Oncogenic Driver. Molecular Cell, 2011, 43, 45-56.	9.7	97
69	Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood, 2011, 117, 4253-4261.	1.4	82
70	Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6468-6473.	7.1	188
71	MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation. Journal of Clinical Investigation, 2011, 121, 1009-1025.	8.2	184
72	Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome–associated PTPN11 mutation. Journal of Clinical Investigation, 2011, 121, 1026-1043.	8.2	219

#	Article	IF	CITATIONS
73	A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood, 2010, 116, 3611-3621.	1.4	60
74	SH2 Domain-Containing Protein-Tyrosine Phosphatases. , 2010, , 771-809.		14
75	Impaired SHP2-Mediated Extracellular Signal-Regulated Kinase Activation Contributes to Gefitinib Sensitivity of Lung Cancer Cells with Epidermal Growth Factor Receptor–Activating Mutations. Cancer Research, 2010, 70, 3843-3850.	0.9	55
76	Altered Glucose Homeostasis in Mice with Liver-specific Deletion of Src Homology Phosphatase 2. Journal of Biological Chemistry, 2010, 285, 39750-39758.	3.4	46
77	Phosphatase-Dependent and -Independent Functions of Shp2 in Neural Crest Cells Underlie LEOPARD Syndrome Pathogenesis. Developmental Cell, 2010, 18, 750-762.	7.0	96
78	Noonan syndrome cardiac defects are caused by <i>PTPN11</i> acting in endocardium to enhance endocardial-mesenchymal transformation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4736-4741.	7.1	103
79	Hidesaburo Hanafusa 1929–2009. Cell, 2009, 137, 197-199.	28.9	1
80	Hidesaburo Hanafusa 1929–2009. Molecular Cell, 2009, 34, 141-143.	9.7	0
81	Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood, 2009, 113, 4414-4424.	1.4	107
82	The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer and Metastasis Reviews, 2008, 27, 179-192.	5.9	343
83	<i>SOS1</i> mutations are rare in human malignancies: Implications for Noonan syndrome patients. Genes Chromosomes and Cancer, 2008, 47, 253-259.	2.8	40
84	Deletion of <i>Ptpn11</i> (Shp2) in Cardiomyocytes Causes Dilated Cardiomyopathy via Effects on the Extracellular Signal–Regulated Kinase/Mitogen-Activated Protein Kinase and RhoA Signaling Pathways. Circulation, 2008, 117, 1423-1435.	1.6	79
85	Control of CNS Cell-Fate Decisions by SHP-2 and Its Dysregulation in Noonan Syndrome. Neuron, 2007, 54, 245-262.	8.1	128
86	The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics and Development, 2007, 17, 23-30.	3.3	246
87	Genetic and cellular mechanisms of oncogenesis. Current Opinion in Genetics and Development, 2007, 17, 1-2.	3.3	40
88	B Cell-Specific Deletion of Protein-Tyrosine Phosphatase Shp1 Promotes B-1a Cell Development and Causes Systemic Autoimmunity. Immunity, 2007, 27, 35-48.	14.3	231
89	Nonreceptor Protein-Tyrosine Phosphatases in Immune Cell Signaling. Annual Review of Immunology, 2007, 25, 473-523.	21.8	174
90	Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nature Genetics, 2007, 39, 70-74.	21.4	534

#	Article	IF	CITATIONS
91	PTPN11 (Shp2) Mutations in LEOPARD Syndrome Have Dominant Negative, Not Activating, Effects. Journal of Biological Chemistry, 2006, 281, 6785-6792.	3.4	272
92	An Shp2/SFK/Ras/Erk Signaling Pathway Controls Trophoblast Stem Cell Survival. Developmental Cell, 2006, 10, 317-327.	7.0	222
93	SHP1 Phosphatase-Dependent T Cell Inhibition by CEACAM1 Adhesion Molecule Isoforms. Immunity, 2006, 25, 769-781.	14.3	123
94	Stops along the RAS pathway in human genetic disease. Nature Medicine, 2006, 12, 283-285.	30.7	181
95	A role for the scaffolding adapter GAB2 in breast cancer. Nature Medicine, 2006, 12, 114-121.	30.7	198
96	SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. Journal of Cell Biology, 2006, 175, 87-97.	5.2	50
97	The Scaffolding Adapter Gab2, via Shp-2, Regulates Kit-evoked Mast Cell Proliferation by Activating the Rac/JNK Pathway. Journal of Biological Chemistry, 2006, 281, 28615-28626.	3.4	75
98	Scaffolding Adapter Grb2-Associated Binder 2 Requires Syk to Transmit Signals from FcεRI. Journal of Immunology, 2006, 176, 2421-2429.	0.8	78
99	Tyrosine phosphatase SHP-2 is a mediator of activity-dependent neuronal excitotoxicity. EMBO Journal, 2005, 24, 305-314.	7.8	33
100	Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell, 2005, 7, 179-191.	16.8	252
101	Diverse Biochemical Properties of Shp2 Mutants. Journal of Biological Chemistry, 2005, 280, 30984-30993.	3.4	256
102	Inhibition of IFN-Â signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10267-10272.	7.1	50
103	Resveratrol Inhibits Angiotensin II- and Epidermal Growth Factor-Mediated Akt Activation: Role of Gab1 and Shp2. Molecular Pharmacology, 2005, 68, 41-48.	2.3	42
104	Activating Mutations of the Noonan Syndrome-Associated <i>SHP2/PTPN11</i> Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia. Cancer Research, 2004, 64, 8816-8820.	0.9	472
105	Site-Selective Regulation of Platelet-Derived Growth Factor Î ² Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase. Molecular and Cellular Biology, 2004, 24, 2190-2201.	2.3	87
106	CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nature Immunology, 2004, 5, 651-657.	14.5	90
107	Mouse model of Noonan syndrome reveals cell type– and gene dosage–dependent effects of Ptpn11 mutation. Nature Medicine, 2004, 10, 849-857.	30.7	384
108	Shp2 Regulates Src Family Kinase Activity and Ras/Erk Activation by Controlling Csk Recruitment. Molecular Cell, 2004, 13, 341-355.	9.7	395

#	Article	IF	CITATIONS
109	The â€~Gab' in signal transduction. Trends in Cell Biology, 2003, 13, 122-130.	7.9	354
110	The â€~Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences, 2003, 28, 284-293.	7.5	1,093
111	STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 2003, 421, 856-859.	27.8	914
112	An eye on organ development. Nature, 2003, 426, 238-239.	27.8	18
113	SHP2 and SOCS3 Contribute to Tyr-759-dependent Attenuation of Interleukin-6 Signaling through gp130. Journal of Biological Chemistry, 2003, 278, 661-671.	3.4	201
114	Regulation of Receptor Tyrosine Kinase Signaling by Protein Tyrosine Phosphatase-1B. Journal of Biological Chemistry, 2003, 278, 739-744.	3.4	226
115	SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase. Journal of Cell Biology, 2003, 163, 999-1010.	5.2	82
116	Tyrosyl Phosphorylation of Shp2 Is Required for Normal ERK Activation in Response to Some, but Not All, Growth Factors. Journal of Biological Chemistry, 2003, 278, 41677-41684.	3.4	186
117	SH2-Domain-Containing Protein–Tyrosine Phosphatases. , 2003, , 707-728.		7
118	Receptor-Specific Regulation of Phosphatidylinositol 3′-Kinase Activation by the Protein Tyrosine Phosphatase Shp2. Molecular and Cellular Biology, 2002, 22, 4062-4072.	2.3	234
119	Mathematical Models of Protein Kinase Signal Transduction. Molecular Cell, 2002, 9, 957-970.	9.7	461
120	Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 2002, 1, 479-492.	16.8	327
121	The docking protein Gab2 is overexpressed and estrogen regulated in human breast cancer. Oncogene, 2002, 21, 5175-5181.	5.9	88
122	Essential role for Gab2 in the allergic response. Nature, 2001, 412, 186-190.	27.8	289
123	Combinatorial control of the specificity of protein tyrosine phosphatases. Current Opinion in Cell Biology, 2001, 13, 182-195.	5.4	470
124	Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors. Journal of Biological Chemistry, 2001, 276, 4747-4755.	3.4	304
125	Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nature Genetics, 2000, 24, 296-299.	21.4	268
126	Cutting Edge: Gab2 Mediates an Inhibitory Phosphatidylinositol 3′-Kinase Pathway in T Cell Antigen Receptor Signaling. Journal of Immunology, 2000, 165, 4158-4163.	0.8	68

#	Article	IF	CITATIONS
127	Activated Mutants of SHP-2 Preferentially Induce Elongation of <i>Xenopus</i> Animal Caps. Molecular and Cellular Biology, 2000, 20, 299-311.	2.3	112
128	New Role for Shc in Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway. Molecular and Cellular Biology, 2000, 20, 7109-7120.	2.3	241
129	The Docking Molecule Gab2 Is Induced by Lymphocyte Activation and Is Involved in Signaling by Interleukin-2 and Interleukin-15 but Not Other Common γ Chain-using Cytokines. Journal of Biological Chemistry, 2000, 275, 26959-26966.	3.4	75
130	The tyrosine phosphatase SHP-1 influences thymocyte selection by setting TCR signaling thresholds. International Immunology, 1999, 11, 1999-2014.	4.0	73
131	SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Current Biology, 1999, 9, 927-S4.	3.9	103
132	Receptor-Type Protein-Tyrosine Phosphatase μ Is Expressed in Specific Vascular Endothelial Bedsin Vivo. Experimental Cell Research, 1999, 248, 329-338.	2.6	36
133	Regulation of Early Events in Integrin Signaling by Protein Tyrosine Phosphatase SHP-2. Molecular and Cellular Biology, 1999, 19, 3205-3215.	2.3	204
134	The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1. Current Biology, 1998, 8, 1009-1017.	3.9	125
135	Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 1998, 6, 249-254.	3.3	283
136	Genetic analysis of protein tyrosine phosphatases. Current Opinion in Genetics and Development, 1998, 8, 112-126.	3.3	132
137	Cloning of p97/Gab2, the Major SHP2-Binding Protein in Hematopoietic Cells, Reveals a Novel Pathway for Cytokine-Induced Gene Activation. Molecular Cell, 1998, 2, 729-740.	9.7	296
138	Regulation of B cell signal transduction by SH2-containing protein–tyrosine phosphatases. Seminars in Immunology, 1998, 10, 329-347.	5.6	62
139	Identification of Major Binding Proteins and Substrates for the SH2-Containing Protein Tyrosine Phosphatase SHP-1 in Macrophages. Molecular and Cellular Biology, 1998, 18, 3838-3850.	2.3	189
140	Structural Determinants of SHP-2 Function and Specificity in <i>Xenopus</i> Mesoderm Induction. Molecular and Cellular Biology, 1998, 18, 161-177.	2.3	125
141	Identification of a Domain in the Î ² Subunit of the Type I Interferon (IFN) Receptor That Exhibits a Negative Regulatory Effect in the Growth Inhibitory Action of Type I IFNs. Journal of Biological Chemistry, 1998, 273, 5577-5581.	3.4	10
142	Phosphorylation of Protein-tyrosine Phosphatase PTP-1B on Identical Sites Suggests Activation of a Common Signaling Pathway during Mitosis and Stress Response in Mammalian Cells. Journal of Biological Chemistry, 1997, 272, 2957-2962.	3.4	46
143	Protein-tyrosine Phosphatase SHP-1 Is Dispensable for FcÎ ³ RIIB-mediated Inhibition of B Cell Antigen Receptor Activation. Journal of Biological Chemistry, 1997, 272, 20038-20043.	3.4	66
144	Characterization of Two SHP-2-associated Binding Proteins and Potential Substrates in Hematopoietic Cells. Journal of Biological Chemistry, 1997, 272, 16421-16430.	3.4	76

#	Article	IF	CITATIONS
145	Protein tyrosine phosphatases in signal transduction. Current Opinion in Cell Biology, 1997, 9, 193-204.	5.4	749
146	Role of phosphatases in lymphocyte activation. Current Opinion in Immunology, 1997, 9, 405-420.	5.5	157
147	From Form to Function: Signaling by Protein Tyrosine Phosphatases. Cell, 1996, 87, 365-368.	28.9	529
148	Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell, 1995, 80, 729-738.	28.9	952
149	The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early xenopus development. Cell, 1995, 80, 473-483.	28.9	326
150	Intramolecular Regulation of Protein Tyrosine Phosphatase SH-PTP1: A New Function for Src Homology 2 Domains. Biochemistry, 1994, 33, 15483-15493.	2.5	202
151	Structure and function of SH2-domain containing tyrosine phosphatases. Seminars in Cell Biology, 1993, 4, 419-432.	3.4	112