Rick L Tarleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6983837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genome Sequence of <i>Trypanosoma cruzi</i> , Etiologic Agent of Chagas Disease. Science, 2005, 309, 409-415.	12.6	1,273
2	Kinetoplastids: related protozoan pathogens, different diseases. Journal of Clinical Investigation, 2008, 118, 1301-1310.	8.2	460
3	The Trypanosoma cruzi Proteome. Science, 2005, 309, 473-476.	12.6	383
4	Parasite persistence in the aetiology of Chagas disease. International Journal for Parasitology, 2001, 31, 550-554.	3.1	254
5	Rapid quantitation of Trypanosoma cruzi in host tissue by real-time PCR. Molecular and Biochemical Parasitology, 2003, 129, 53-59.	1.1	227
6	CD8+ T-Cell Responses to Trypanosoma cruzi Are Highly Focused on Strain-Variant trans-Sialidase Epitopes. PLoS Pathogens, 2006, 2, e77.	4.7	204
7	The Challenges of Chagas Disease— Grim Outlook or Glimmer of Hope?. PLoS Medicine, 2007, 4, e332.	8.4	196
8	Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nature Medicine, 2008, 14, 542-550.	30.7	186
9	CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi. MBio, 2015, 6, e02097-14.	4.1	186
10	Immune system recognition of Trypanosoma cruzi. Current Opinion in Immunology, 2007, 19, 430-434.	5.5	184
11	Frequency of Interferonâ€Î³â€"Producing T Cells Specific forTrypanosoma cruziInversely Correlates with Disease Severity in Chronic Human Chagas Disease. Journal of Infectious Diseases, 2004, 189, 909-918.	4.0	180
12	A Heuristic Method for Assigning a False-discovery Rate for Protein Identifications from Mascot Database Search Results. Molecular and Cellular Proteomics, 2005, 4, 762-772.	3.8	180
13	EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 2015, 1, e000033.	2.0	174
14	Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. ELife, 2018, 7, .	6.0	169
15	Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease. International Immunology, 1996, 8, 13-22.	4.0	159
16	In Vitro and In Vivo High-Throughput Assays for the Testing of Anti-Trypanosoma cruzi Compounds. PLoS Neglected Tropical Diseases, 2010, 4, e740.	3.0	140
17	Chagas disease: a role for autoimmunity?. Trends in Parasitology, 2003, 19, 447-451.	3.3	138
18	CD8+ T cells in Trypanosoma cruzi infection. Current Opinion in Immunology, 2009, 21, 385-390.	5.5	137

#	Article	IF	CITATIONS
19	Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection. Immunological Reviews, 2004, 201, 304-317.	6.0	134
20	Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas' disease patients. International Immunology, 2006, 18, 465-471.	4.0	134
21	The relative contribution of antibody production and CD8 ⁺ T cell function to immune control of <i>Trypanosoma cruzi</i> . Parasite Immunology, 1998, 20, 207-216.	1.5	133
22	The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics, 2009, 10, 370.	2.8	125
23	Genetic Immunization Elicits Antigen-Specific Protective Immune Responses and Decreases Disease Severity in Trypanosoma cruzi Infection. Infection and Immunity, 2002, 70, 5547-5555.	2.2	118
24	New, Combined, and Reduced Dosing Treatment Protocols Cure Trypanosoma cruzi Infection in Mice. Journal of Infectious Diseases, 2014, 209, 150-162.	4.0	118
25	CD8+ T cells in Trypanosoma cruzi infection. Seminars in Immunopathology, 2015, 37, 233-238.	6.1	109
26	Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics, 2009, 10, 255.	2.8	108
27	Increased Susceptibility of Stat4-Deficient and Enhanced Resistance in Stat6-Deficient Mice to Infection withTrypanosoma cruzi. Journal of Immunology, 2000, 165, 1520-1525.	0.8	103
28	Antigen-Specific Th1 But Not Th2 Cells Provide Protection from Lethal <i>Trypanosoma cruzi</i> Infection in Mice. Journal of Immunology, 2001, 166, 4596-4603.	0.8	103
29	Chronic Human Infection with <i>Trypanosoma cruzi</i> Drives CD4+ T Cells to Immune Senescence. Journal of Immunology, 2009, 183, 4103-4108.	0.8	103
30	Changes in <i>Trypanosoma cruzi</i> –Specific Immune Responses after Treatment: Surrogate Markers of Treatment Efficacy. Clinical Infectious Diseases, 2009, 49, 1675-1684.	5.8	98
31	Characterization of cytokine production in murineTrypanosoma cruzi infection byin situ immunocytochemistry: Lack of association between susceptibility and type 2 cytokine production. European Journal of Immunology, 1996, 26, 102-109.	2.9	97
32	Protozoan persister-like cells and drug treatment failure. Nature Reviews Microbiology, 2019, 17, 607-620.	28.6	97
33	High Throughput Selection of Effective Serodiagnostics for Trypanosoma cruzi infection. PLoS Neglected Tropical Diseases, 2008, 2, e316.	3.0	93
34	Impact of Aetiological Treatment on Conventional and Multiplex Serology in Chronic Chagas Disease. PLoS Neglected Tropical Diseases, 2011, 5, e1314.	3.0	93
35	Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. MBio, 2017, 8, .	4.1	88
36	Glycoproteomics ofTrypanosoma cruziTrypomastigotes Using Subcellular Fractionation, Lectin Affinity, and Stable Isotope Labeling. Journal of Proteome Research, 2006, 5, 3376-3384.	3.7	84

#	Article	IF	CITATIONS
37	Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genomics, 2011, 12, 139.	2.8	80
38	Endogenous CD4 ⁺ CD25 ⁺ Regulatory T Cells Have a Limited Role in the Control of <i>Trypanosoma cruzi</i> Infection in Mice. Infection and Immunity, 2007, 75, 861-869.	2.2	79
39	Vaccination with Trypomastigote Surface Antigen 1-Encoding Plasmid DNA Confers Protection against Lethal <i>Trypanosoma cruzi</i> Infection. Infection and Immunity, 1998, 66, 5073-5081.	2.2	79
40	A Systematic Review of High Quality Diagnostic Tests for Chagas Disease. PLoS Neglected Tropical Diseases, 2012, 6, e1881.	3.0	78
41	Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infectious Diseases, 2019, 5, 152-157.	3.8	78
42	Antigen-Specific T Cells Maintain an Effector Memory Phenotype during Persistent <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2005, 174, 1594-1601.	0.8	76
43	Insufficient TLR Activation Contributes to the Slow Development of CD8+ T Cell Responses in <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2009, 183, 1245-1252.	0.8	76
44	Predominance of CD8+ T Lymphocytes in the Inflammatory Lesions of Mice with Acute Trypanosoma cruzi Infection. American Journal of Tropical Medicine and Hygiene, 1993, 48, 161-169.	1.4	72
45	Trypanosoma cruzi: Cytokine effects on macrophage trypanocidal activity. Experimental Parasitology, 1991, 72, 391-402.	1.2	69
46	Identification of Contractile Vacuole Proteins in Trypanosoma cruzi. PLoS ONE, 2011, 6, e18013.	2.5	69
47	HLA Class I-T Cell Epitopes from trans-Sialidase Proteins Reveal Functionally Distinct Subsets of CD8+ T Cells in Chronic Chagas Disease. PLoS Neglected Tropical Diseases, 2008, 2, e288.	3.0	66
48	Chagas Disease and the London Declaration on Neglected Tropical Diseases. PLoS Neglected Tropical Diseases, 2014, 8, e3219.	3.0	61
49	Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine, 2003, 21, 3070-3080.	3.8	60
50	Persistent Production of Inflammatory and Anti-inflammatory Cytokines and Associated MHC and Adhesion Molecule Expression at the Site of Infection and Disease in ExperimentalTrypanosoma cruziInfections. Experimental Parasitology, 1996, 84, 203-213.	1.2	59
51	Inducible Nitric Oxide Synthase Is Not Essential for Control of <i>Trypanosoma cruzi</i> Infection in Mice. Infection and Immunity, 2004, 72, 4081-4089.	2.2	58
52	CD8+ T Cells Specific for Immunodominant <i>Trans</i> -Sialidase Epitopes Contribute to Control of <i>Trypanosoma cruzi</i> Infection but Are Not Required for Resistance. Journal of Immunology, 2010, 185, 560-568.	0.8	58
53	Inhibitory Receptors Are Expressed by Trypanosoma cruzi-Specific Effector T Cells and in Hearts of Subjects with Chronic Chagas Disease. PLoS ONE, 2012, 7, e35966.	2.5	58
54	Stable CD8+ T Cell Memory during Persistent <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2008, 181, 2644-2650.	0.8	57

#	Article	IF	CITATIONS
55	Interleukin 1 activity in haemolymph from strains of the snail biomphalaria glabrata varying in susceptibility to the human blood fluke, Schistosoma mansoni: presence, differential expression, and biological function. Cytokine, 1994, 6, 21-27.	3.2	56
56	Cutting Edge: Dysfunctional CD8+ T Cells Reside in Nonlymphoid Tissues During Chronic <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2003, 170, 2264-2268.	0.8	53
57	Eliminating Chagas disease: challenges and a roadmap. BMJ: British Medical Journal, 2009, 338, b1283-b1283.	2.3	52
58	Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathogens, 2021, 17, e1009254.	4.7	50
59	TGFâ€Î² regulates pathology but not tissue CD8 ⁺ T cell dysfunction during experimental <i>Trypanosoma cruzi</i> infection. European Journal of Immunology, 2007, 37, 2764-2771.	2.9	48
60	Sequential combined treatment with allopurinol and benznidazole in the chronic phase of Trypanosoma cruzi infection: a pilot study. Journal of Antimicrobial Chemotherapy, 2013, 68, 424-437.	3.0	46
61	Polyfunctional T Cell Responses in Children in Early Stages of Chronic Trypanosoma cruzi Infection Contrast with Monofunctional Responses of Long-term Infected Adults. PLoS Neglected Tropical Diseases, 2013, 7, e2575.	3.0	45
62	Engineered trivalent immunogen adjuvanted with a STING agonist confers protection against Trypanosoma cruzi infection. Npj Vaccines, 2017, 2, 9.	6.0	45
63	The Trypanosoma cruzi Flagellum Is Discarded via Asymmetric Cell Division following Invasion and Provides Early Targets for Protective CD8+ T Cells. Cell Host and Microbe, 2014, 16, 439-449.	11.0	44
64	Microarray profiling of gene expression during trypomastigote to amastigote transition in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2003, 131, 55-64.	1.1	42
65	Changes in cell populations and immunoglobulin-producing cells in the spleens of mice infected with Trypanosoma cruzi: Correlations with parasite-specific antibody response. Cellular Immunology, 1983, 80, 392-404.	3.0	41
66	Epigenetic Regulation of Transcription and Virulence in Trypanosoma cruzi by O-Linked Thymine Glucosylation of DNA. Molecular and Cellular Biology, 2011, 31, 1690-1700.	2.3	40
67	Construction and use of a multi-competitor gene for quantitative RT-PCR using existing primer sets. Journal of Immunological Methods, 1995, 181, 145-156.	1.4	39
68	Molecular cloning of the gene encoding the 83 kDa amastigote surface protein and its identification as a member of the Trypanosoma cruzi sialidase superfamily1Note: Nucleotide sequence data reported in this paper is available in the GenBankâ,,¢ database under the accession number U77951.1. Molecular and Biochemical Parasitology, 1997, 88, 137-149.	1.1	39
69	Limited Role for CD4 + T-Cell Help in the Initial Priming of Trypanosoma cruzi- Specific CD8 + T Cells. Infection and Immunity, 2007, 75, 231-235.	2.2	39
70	Perpetual expression of PAMPs necessary for optimal immune control and clearance of a persistent pathogen. Nature Communications, 2013, 4, 2616.	12.8	38
71	Trypanoside, anti-tuberculosis, leishmanicidal, and cytotoxic activities of tetrahydrobenzothienopyrimidines. Bioorganic and Medicinal Chemistry, 2010, 18, 2880-2886.	3.0	36
72	Highly competent, non-exhausted CD8+ T cells continue to tightly control pathogen load throughout chronic Trypanosoma cruzi infection. PLoS Pathogens, 2018, 14, e1007410.	4.7	36

#	Article	IF	CITATIONS
73	Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. BMC Microbiology, 2009, 9, 90.	3.3	35
74	Potential new clinical therapies for Chagas disease. Expert Review of Clinical Pharmacology, 2014, 7, 317-325.	3.1	35
75	Oral Exposure to Trypanosoma cruzi Elicits a Systemic CD8 ⁺ T Cell Response and Protection against Heterotopic Challenge. Infection and Immunity, 2011, 79, 3397-3406.	2.2	33
76	Reaching for the Holy Grail: insights from infection/cure models on the prospects for vaccines for Trypanosoma cruzi infection. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 445-451.	1.6	33
77	Proteins with Glycosylphosphatidylinositol (GPI) Signal Sequences Have Divergent Fates during a GPI Deficiency. Journal of Biological Chemistry, 1997, 272, 12482-12491.	3.4	32
78	Treatment Success in Trypanosoma cruzi Infection Is Predicted by Early Changes in Serially Monitored Parasite-Specific T and B Cell Responses. PLoS Neglected Tropical Diseases, 2016, 10, e0004657.	3.0	32
79	Methodological advances in drug discovery for Chagas disease. Expert Opinion on Drug Discovery, 2011, 6, 653-661.	5.0	31
80	Evidence for the role of vacuolar soluble pyrophosphatase and inorganic polyphosphate in <i><scp>T</scp>rypanosoma cruzi</i> persistence. Molecular Microbiology, 2013, 90, 699-715.	2.5	31
81	Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics, 2016, 17, 729.	2.8	31
82	A modified drug regimen clears active and dormant trypanosomes in mouse models of Chagas disease. Science Translational Medicine, 2020, 12, .	12.4	31
83	Regulation of immunity in Trypanosoma cruzi infection. Experimental Parasitology, 1991, 73, 106-109.	1.2	30
84	The identification and molecular characterization of Trypanosoma cruzi amastigote surface protein-1, a member of the trans-sialidase gene super-family1Note: Nucleotide sequence data reported in this paper is available in the GenBank data base under the Accession no. U74494.1. Molecular and Biochemical Parasitology, 1997, 86, 1-11.	1.1	29
85	Measurement of parasite-specific immune responsesin vitro: evidence for suppression of the antibody response toTrypanosoma cruzi. European Journal of Immunology, 1985, 15, 845-850.	2.9	28
86	Is Chagas Disease Really the "New HIV/AIDS of the Americas�. PLoS Neglected Tropical Diseases, 2012, 6, e1861.	3.0	26
87	Parasite genomics: current status and future prospects. Current Opinion in Immunology, 2001, 13, 395-402.	5.5	25
88	Perturbed T Cell IL-7 Receptor Signaling in Chronic Chagas Disease. Journal of Immunology, 2015, 194, 3883-3889.	0.8	24
89	Trypanosoma cruzi infection suppresses nuclear factors that bind to specific sites on the interleukin. European Journal of Immunology, 1994, 24, 16-23.	2.9	23
90	A semi-quantitative GeLC-MS analysis of temporal proteome expression in the emerging nosocomial pathogen Ochrobactrum anthropi. Genome Biology, 2007, 8, R110.	9.6	23

#	Article	IF	CITATIONS
91	Multidimensional analysis of the insoluble sub-proteome ofOceanobacillus iheyensis HTE831, an alkaliphilic and halotolerant deep-sea bacterium isolated from the Iheya ridge. Proteomics, 2007, 7, 82-91.	2.2	23
92	A framework for ontology-based question answering with application to parasite immunology. Journal of Biomedical Semantics, 2015, 6, 31.	1.6	23
93	Trypanosoma cruzi: Effect on B-cell-responsive and -responding clones. Experimental Parasitology, 1981, 51, 257-268.	1.2	22
94	Distinct Treatment Outcomes of Antiparasitic Therapy in Trypanosoma cruzi-Infected Children Is Associated With Early Changes in Cytokines, Chemokines, and T-Cell Phenotypes. Frontiers in Immunology, 2018, 9, 1958.	4.8	22
95	New approaches in vaccine development for parasitic infections. Cellular Microbiology, 2005, 7, 1379-1386.	2.1	21
96	Analysis of theTrypanosoma cruzicyclophilin gene family and identification of Cyclosporin A binding proteins. Parasitology, 2006, 132, 867-882.	1.5	21
97	Chagas Disease: A Solvable Problem, Ignored. Trends in Molecular Medicine, 2016, 22, 835-838.	6.7	21
98	Proteomic analysis of the Trypanosoma cruzi ribosomal proteins. Biochemical and Biophysical Research Communications, 2009, 382, 30-34.	2.1	20
99	Knockout of the dhfr-ts Gene in Trypanosoma cruzi Generates Attenuated Parasites Able to Confer Protection against a Virulent Challenge. PLoS Neglected Tropical Diseases, 2011, 5, e1418.	3.0	20
100	New Scheme of Intermittent Benznidazole Administration in Patients Chronically Infected with Trypanosoma cruzi: Clinical, Parasitological, and Serological Assessment after Three Years of Follow-Up. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
101	Trypanosomes and Microfilariae in Feral Owl and Squirrel Monkeys Maintained in Research Colonies. American Journal of Tropical Medicine and Hygiene, 1993, 49, 254-259.	1.4	17
102	Trypanosoma cruzi-specific immune responses in subjects from endemic areas of Chagas disease of Argentina. Microbes and Infection, 2010, 12, 359-363.	1.9	16
103	A new liquid chromatography/tandem mass spectrometric approach for the identification of class I major histocompatibility complex associated peptides that eliminates the need for bioassays. , 1999, 13, 1024-1030.		15
104	Generation of <i>Trypanosoma cruzi</i> -Specific CD8 ⁺ T-Cell Immunity Is Unaffected by the Absence of Type I Interferon Signaling. Infection and Immunity, 2010, 78, 3154-3159.	2.2	15
105	Chemokine receptor 7 (CCR7)-expression and IFNÎ ³ production define vaccine-specific canine T-cell subsets. Veterinary Immunology and Immunopathology, 2015, 164, 127-136.	1.2	15
106	A Monoclonal Antibody to Alpha Tubulin Recognizes Host Cell andTrypanosoma cruziTubulins1. Journal of Protozoology, 1988, 35, 123-129.	0.8	14
107	Initial induction of immunity, followed by suppression of responses to parasite antigens during Trypanosoma cruzi infection of mice. Parasite Immunology, 1987, 9, 579-589.	1.5	13
108	In vitro Culture of Cardiac Mast Cells from Mice Experimentally Infected with <i>Trypanosoma cruzi</i> . International Archives of Allergy and Immunology, 1994, 105, 251-257.	2.1	13

#	Article	IF	CITATIONS
109	A Combined Shotgun and Multidimensional Proteomic Analysis of the Insoluble Subproteome of the Obligate Thermophile,GeobacillusthermoleovoransT80. Journal of Proteome Research, 2006, 5, 2465-2473.	3.7	13
110	Multidimensional Proteomic Analysis of the Soluble Subproteome of the Emerging Nosocomial PathogenOchrobactrumanthropi. Journal of Proteome Research, 2006, 5, 3145-3153.	3.7	13
111	Transgenic parasites accelerate drug discovery. Trends in Parasitology, 2012, 28, 90-92.	3.3	13
112	Frequency of IFNÎ ³ -producing T cells correlates with seroreactivity and activated T cells during canine Trypanosoma cruzi infection. Veterinary Research, 2014, 45, 6.	3.0	13
113	TcruziDB: an integrated Trypanosoma cruzi genome resource. Nucleic Acids Research, 2004, 32, 344D-346.	14.5	12
114	Long-Term Immunity to Trypanosoma cruzi in the Absence of Immunodominant <i>trans</i> -Sialidase-Specific CD8 ⁺ T Cells. Infection and Immunity, 2016, 84, 2627-2638.	2.2	12
115	High variation in immune responses and parasite phenotypes in naturally acquired Trypanosoma cruzi infection in a captive non-human primate breeding colony in Texas, USA. PLoS Neglected Tropical Diseases, 2021, 15, e0009141.	3.0	12
116	The Significance of Discordant Serology in Chagas Disease: Enhanced T-Cell Immunity to Trypanosoma cruzi in Serodiscordant Subjects. Frontiers in Immunology, 2017, 8, 1141.	4.8	11
117	Chagas Disease Drug Discovery: Multiparametric Lead Optimization against <i>Trypanosoma cruzi</i> in Acylaminobenzothiazole Series. Journal of Medicinal Chemistry, 2019, 62, 10362-10375.	6.4	11
118	Measurement of parasite-specific antibody responses using a tritiated avidin-solid phase radioimmunoassay. Journal of Immunological Methods, 1983, 60, 213-220.	1.4	9
119	Report of the 2nd Chagas Drug Discovery Consortium meeting, held on 3 November 2010; Atlanta GA, USA. Expert Opinion on Drug Discovery, 2011, 6, 965-973.	5.0	9
120	Ontology-Driven Provenance Management in eScience: An Application in Parasite Research. Lecture Notes in Computer Science, 2009, , 992-1009.	1.3	9
121	Diagnosis of Chagas' Disease in Humans Using a Biotin-3H-Avidin Radioimmunoassay *. American Journal of Tropical Medicine and Hygiene, 1984, 33, 34-40.	1.4	8
122	Biology of tegument associated IgG-Fc and C3 receptors inSchistosoma mansoni. Journal of Chemical Ecology, 1986, 12, 1833-1841.	1.8	6
123	Overview of the Parasitic Pathogens. , 0, , 39-52.		6
124	Differentiation of trypanosomatid species by hybridization to selected rRNA probes. Molecular and Cellular Probes, 1993, 7, 89-96.	2.1	5
125	A Semantic Problem Solving Environment for Integrative Parasite Research: Identification of Intervention Targets for Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2012, 6, e1458.	3.0	5
126	Cutting Edge: Augmenting Muscle MHC Expression Enhances Systemic Pathogen Control at the Expense of T Cell Exhaustion. Journal of Immunology, 2020, 205, 573-578.	0.8	5

#	Article	IF	CITATIONS
127	Reduced <i>Trypanosoma cruzi</i> -specific humoral response and enhanced T cell immunity after treatment interruption with benznidazole in chronic Chagas disease. Journal of Antimicrobial Chemotherapy, 2021, 76, 1580-1592.	3.0	5
128	Loss of Suppressor Activity in the Serum of Mice Infected with Trypanosoma cruzi. Journal of Parasitology, 1984, 70, 253.	0.7	3
129	Interleukin 2 production in patients with Chagas' disease: correlation with anti-parasite antibody responses. Immunology Letters, 1988, 17, 229-234.	2.5	3
130	Overview of Parasitic Pathogens. , 0, , 143-153.		1
131	Immunity to Trypanosoma cruzi. , 2016, , 108-113.		1
132	Fundamental Immunology. American Journal of Tropical Medicine and Hygiene, 1991, 44, 354-354.	1.4	0