Benoit Tauzin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6983796/publications.pdf

Version: 2024-02-01

430874 434195 1,190 31 18 31 citations h-index g-index papers 40 40 40 1040 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Shear wave velocities across the olivine $\hat{a}\in$ " wadsleyite $\hat{a}\in$ " ringwoodite transitions and sharpness of the 410 km seismic discontinuity. Earth and Planetary Science Letters, 2022, 593, 117690.	4.4	1
2	Multifrequency Inversion of Ps and Sp Receiver Functions: Methodology and Application to USArray Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020350.	3.4	10
3	Autocorrelation of the Ground Vibrations Recorded by the SEISâ€InSight Seismometer on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006498.	3.6	34
4	Seismic Noise Autocorrelations on Mars. Earth and Space Science, 2021, 8, e2021EA001755.	2.6	31
5	Thickness and structure of the martian crust from InSight seismic data. Science, 2021, 373, 438-443.	12.6	140
6	Automatic Identification of Mantle Seismic Phases Using a Convolutional Neural Network. Geophysical Research Letters, 2021, 48, e2020GL091658.	4.0	7
7	Evidence of Volatileâ€Induced Melting in the Northeast Asian Upper Mantle. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022167.	3.4	3
8	Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars <i>InSight</i> Mission. Bulletin of the Seismological Society of America, 2021, 111, 2982-3002.	2.3	42
9	Improving Constraints on Planetary Interiors With PPs Receiver Functions. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006983.	3.6	34
10	A poorly mixed mantle transition zone and its thermal state inferred from seismic waves. Nature Geoscience, 2021, 14, 949-955.	12.9	25
11	Crust stratigraphy and heterogeneities of the first kilometers at the dichotomy boundary in western Elysium Planitia and implications for InSight lander. Icarus, 2020, 338, 113511.	2.5	40
12	On The Efficiency of <i>P</i> â€Wave Coda Autocorrelation in Recovering Crustal Structure: Examples From Dense Arrays in the Eastern United States. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020270.	3.4	7
13	MSS/1: Singleâ€Station and Singleâ€Event Marsquake Inversion. Earth and Space Science, 2020, 7, e2020EA001118.	2.6	16
14	An inversion approach for analysing the physical properties of a seismic low-velocity layer in the upper mantle. Physics of the Earth and Planetary Interiors, 2020, 304, 106502.	1.9	4
15	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	12.9	207
16	Seismological evidence for thermo-chemical heterogeneity in Earth's continental mantle. Earth and Planetary Science Letters, 2020, 539, 116240.	4.4	13
17	The Mantle Transition Zone in Fennoscandia: Enigmatic High Topography Without Deep Mantle Thermal Anomaly. Geophysical Research Letters, 2019, 46, 3652-3662.	4.0	10
18	Receiver functions from seismic interferometry: a practical guide. Geophysical Journal International, 2019, 217, 1-24.	2.4	29

#	Article	IF	CITATIONS
19	Multiple Phase Changes in the Mantle Transition Zone Beneath Northeast Asia: Constraints From Teleseismic Reflected and Converted Body Waves. Journal of Geophysical Research: Solid Earth, 2018, 123, 6636-6657.	3.4	7
20	Stochastic Inversion of <i>P</i> â€toâ€ <i>S</i> Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,706.	3.4	5
21	Cascadia subduction slab heterogeneity revealed by threeâ€dimensional receiver function Kirchhoff migration. Geophysical Research Letters, 2017, 44, 694-701.	4.0	17
22	Pervasive upper mantle melting beneath the western US. Earth and Planetary Science Letters, 2017, 463, 25-35.	4.4	35
23	Deep crustal fracture zones control fluid escape and the seismic cycle in the Cascadia subduction zone. Earth and Planetary Science Letters, 2017, 460, 1-11.	4.4	21
24	Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: Thermal or compositional origin? Earth and Planetary Science Letters, 2017, 477, 1-13.	4.4	31
25	Multi-mode conversion imaging of the subducted Gorda and Juan de Fuca plates below the North American continent. Earth and Planetary Science Letters, 2016, 440, 135-146.	4.4	28
26	Seismically deduced thermodynamics phase diagrams for the mantle transition zone. Earth and Planetary Science Letters, 2014, 401, 337-346.	4.4	33
27	Seismoacoustic coupling induced by the breakup of the 15 February 2013 Chelyabinsk meteor. Geophysical Research Letters, 2013, 40, 3522-3526.	4.0	36
28	Multiple transition zone seismic discontinuities and low velocity layers below western United States. Journal of Geophysical Research: Solid Earth, 2013, 118, 2307-2322.	3.4	60
29	Seismic evidence for a global low-velocity layer within the Earth's upper mantle. Nature Geoscience, 2010, 3, 718-721.	12.9	176
30	Joint mineral physics and seismic wave traveltime analysis of upper mantle temperature. Geology, 2009, 37, 363-366.	4.4	14
31	The mantle transition zone as seen by global <i>Pds</i> phases: No clear evidence for a thin transition zone beneath hotspots. Journal of Geophysical Research, 2008, 113, .	3.3	73