Xin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6983126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Lipogenesis Rewiring in Hepatocellular Carcinoma. Seminars in Liver Disease, 2022, 42, 077-086.	3.6	9
2	TAZ is indispensable for c-MYC-induced hepatocarcinogenesis. Journal of Hepatology, 2022, 76, 123-134.	3.7	28
3	RASSF1A independence and early galectinâ€1 upregulation in PIK3CAâ€induced hepatocarcinogenesis: new therapeutic venues. Molecular Oncology, 2022, 16, 1091-1118.	4.6	8
4	Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology, 2022, 76, 951-966.	7.3	25
5	Hydrodynamic Injection for Developing NASH Model. Methods in Molecular Biology, 2022, 2455, 31-39.	0.9	1
6	\hat{I}^2 -Catenin signaling in hepatocellular carcinoma. Journal of Clinical Investigation, 2022, 132, .	8.2	80
7	Untargeted UPLC-MS-based metabolomics analysis reveals the metabolic profile of intrahepatic cholangiocarcinoma process and the intervention effect of Osthole in mice. Pharmacological Research Modern Chinese Medicine, 2022, 3, 100096.	1.2	2
8	β-Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Gastroenterology, 2022, 163, 481-494.	1.3	13
9	The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	10
10	Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut, 2021, 70, 1746-1757.	12.1	60
11	Role of the Mammalian Target of Rapamycin Pathway in Liver Cancer: From Molecular Genetics to Targeted Therapies. Hepatology, 2021, 73, 49-61.	7.3	79
12	Distinct and Overlapping Roles of Hippo Effectors YAP and TAZ During Human and Mouse Hepatocarcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1095-1117.	4.5	21
13	Molecular Mechanisms of Hepatoblastoma. Seminars in Liver Disease, 2021, 41, 028-041.	3.6	19
14	Distinct functions of transforming growth factor-Î ² signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death and Disease, 2021, 12, 200.	6.3	16
15	Loss of Apc Cooperates with Activated Oncogenes to Induce Liver Tumor Formation in Mice. American Journal of Pathology, 2021, 191, 930-946.	3.8	4
16	Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 2021, 39, 866-882.e11.	16.8	159
17	Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Communications Biology, 2021, 4, 763.	4.4	6
18	Overexpression of Mothers Against Decapentaplegic Homolog 7 Activates the Yesâ€Associated Protein/NOTCH Cascade and Promotes Liver Carcinogenesis in Mice and Humans. Hepatology, 2021, 74, 248-263.	7.3	22

#	Article	IF	CITATIONS
19	Nuclear factor erythroid 2–related factor 2 and β atenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications. Hepatology, 2021, 74, 741-759.	7.3	32
20	TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants during hepatocarcinogenesis. Journal of Hepatology, 2021, 75, 120-131.	3.7	22
21	Hepatocellular carcinoma (HCC): the most promising therapeutic targets in the preclinical arena based on tumor biology characteristics. Expert Opinion on Therapeutic Targets, 2021, 25, 645-658.	3.4	5
22	YAP Accelerates Notch-Driven Cholangiocarcinogenesis via mTORC1 in Mice. American Journal of Pathology, 2021, 191, 1651-1667.	3.8	12
23	Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. Journal of Hepatology, 2021, 75, 888-899.	3.7	45
24	Alpelisib combination treatment as novel targeted therapy against hepatocellular carcinoma. Cell Death and Disease, 2021, 12, 920.	6.3	13
25	Selective targeting of MYC mRNA by stabilized antisense oligonucleotides. Oncogene, 2021, 40, 6527-6539.	5.9	5
26	A targetable LIFRâ^'NF-κBâ^'LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nature Communications, 2021, 12, 7333.	12.8	117
27	Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut, 2020, 69, 177-186.	12.1	121
28	Oncogenic Mutations in Armadillo Repeats 5 and 6 of β-Catenin Reduce Binding to APC, Increasing Signaling and Transcription of Target Genes. Gastroenterology, 2020, 158, 1029-1043.e10.	1.3	20
29	Harnessing big â€~omics' data and AI for drug discovery in hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 238-251.	17.8	90
30	Pivotal Role of Fatty Acid Synthase in c-MYC Driven Hepatocarcinogenesis. International Journal of Molecular Sciences, 2020, 21, 8467.	4.1	20
31	mTORC2 Signaling Is Necessary for Timely Liver Regeneration after Partial Hepatectomy. American Journal of Pathology, 2020, 190, 817-829.	3.8	13
32	CDK9 is dispensable for YAPâ€driven hepatoblastoma development. Pediatric Blood and Cancer, 2020, 67, e28221.	1.5	3
33	Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis. Cell Death and Differentiation, 2020, 27, 2330-2343.	11.2	39
34	Oncogene-dependent function of BRG1 in hepatocarcinogenesis. Cell Death and Disease, 2020, 11, 91.	6.3	23
35	Identifying strategies to target the metabolic flexibility of tumours. Nature Metabolism, 2020, 2, 335-350.	11.9	86
36	Mammalian Target of Rapamycin Complex 2 Signaling Is Required for Liver Regeneration in a Cholestatic Liver Injury Murine Model. American Journal of Pathology, 2020, 190, 1414-1426.	3.8	7

#	Article	IF	CITATIONS
37	The Hippo Effector Transcriptional Coactivator with PDZ-Binding Motif Cooperates with Oncogenic β-Catenin to Induce Hepatoblastoma Development in Mice and Humans. American Journal of Pathology, 2020, 190, 1397-1413.	3.8	13
38	Potential dual functional roles of the Yâ€linked RBMY in hepatocarcinogenesis. Cancer Science, 2020, 111, 2987-2999.	3.9	9
39	Combined CDK4/6 and Pan-mTOR Inhibition Is Synergistic Against Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2019, 25, 403-413.	7.0	56
40	SNAI1 Promotes the Cholangiocellular Phenotype, but not Epithelial–Mesenchymal Transition, in a Murine Hepatocellular Carcinoma Model. Cancer Research, 2019, 79, 5563-5574.	0.9	12
41	Combined Treatment with MEK and mTOR Inhibitors is Effective in In Vitro and In Vivo Models of Hepatocellular Carcinoma. Cancers, 2019, 11, 930.	3.7	8
42	Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations. Cell Metabolism, 2019, 29, 1135-1150.e6.	16.2	92
43	APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression. Gut, 2019, 68, 1846-1857.	12.1	59
44	Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. Journal of Hepatology, 2019, 71, 742-752.	3.7	44
45	The mTORC2â€Akt1 Cascade Is Crucial for câ€Myc to Promote Hepatocarcinogenesis in Mice and Humans. Hepatology, 2019, 70, 1600-1613.	7.3	70
46	Functional role of SGK3 in PI3K/Pten driven liver tumor development. BMC Cancer, 2019, 19, 343.	2.6	17
47	Reply. Hepatology, 2019, 70, 764-765.	7.3	1
48	Axis inhibition protein 1 (Axin1) Deletion–Induced Hepatocarcinogenesis Requires Intact β atenin but Not Notch Cascade in Mice. Hepatology, 2019, 70, 2003-2017.	7.3	33
49	MEK inhibition suppresses K-Ras wild-type cholangiocarcinoma in vitro and in vivo via inhibiting cell proliferation and modulating tumor microenvironment. Cell Death and Disease, 2019, 10, 120.	6.3	10
50	TEA Domain Transcription Factor 4 Is the Major Mediator of Yes-Associated Protein Oncogenic Activity in Mouse and Human Hepatoblastoma. American Journal of Pathology, 2019, 189, 1077-1090.	3.8	25
51	Pathogenetic, Prognostic, and Therapeutic Role of Fatty Acid Synthase in Human Hepatocellular Carcinoma. Frontiers in Oncology, 2019, 9, 1412.	2.8	44
52	Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans. American Journal of Pathology, 2018, 188, 995-1006.	3.8	29
53	Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model. Cell Death and Disease, 2018, 9, 31.	6.3	23
54	Loss of Pten synergizes with c-Met to promote hepatocellular carcinoma development via mTORC2 pathway. Experimental and Molecular Medicine, 2018, 50, e417-e417.	7.7	39

#	Article	IF	CITATIONS
55	Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice. Oncogene, 2018, 37, 3229-3242.	5.9	79
56	MicroRNAâ€21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology, 2018, 67, 2414-2429.	7.3	64
57	Oncogenic potential of N-terminal deletion and S45Y mutant β-catenin in promoting hepatocellular carcinoma development in mice. BMC Cancer, 2018, 18, 1093.	2.6	17
58	Focal adhesion kinase activation limits efficacy of Dasatinib in câ€Myc driven hepatocellular carcinoma. Cancer Medicine, 2018, 7, 6170-6181.	2.8	11
59	Oncogene-dependent addiction to carbohydrate-responsive element binding protein in hepatocellular carcinoma. Cell Cycle, 2018, 17, 1496-1512.	2.6	14
60	Roles of microRNA in liver cancer. Liver Research, 2018, 2, 61-72.	1.4	15
61	Both <i>de novo</i> synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver International, 2017, 37, 80-89.	3.9	60
62	Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle, 2017, 16, 499-507.	2.6	45
63	Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets. Expert Review of Gastroenterology and Hepatology, 2017, 11, 349-356.	3.0	16
64	Glucose Catabolism in Liver Tumors Induced by c-MYC Can Be Sustained by Various PKM1/PKM2 Ratios and Pyruvate Kinase Activities. Cancer Research, 2017, 77, 4355-4364.	0.9	74
65	Role of the Notch signaling in cholangiocarcinoma. Expert Opinion on Therapeutic Targets, 2017, 21, 471-483.	3.4	27
66	A functional mammalian target of rapamycin complex 1 signaling is indispensable for câ€Mycâ€driven hepatocarcinogenesis. Hepatology, 2017, 66, 167-181.	7.3	119
67	Targeting βâ€catenin in hepatocellular cancers induced by coexpression of mutant βâ€catenin and Kâ€Ras in mice. Hepatology, 2017, 65, 1581-1599.	7.3	67
68	Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. Journal of Hepatology, 2017, 67, 1194-1203.	3.7	77
69	MicroRNAâ€206 prevents the pathogenesis of hepatocellular carcinoma by modulating expression of met protoâ€oncogene and cyclinâ€dependent kinase 6 in mice. Hepatology, 2017, 66, 1952-1967.	7.3	65
70	Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLoS ONE, 2017, 12, e0184068.	2.5	35
71	Deregulated c-Myc requires a functional HSF1 for experimental and human hepatocarcinogenesis. Oncotarget, 2017, 8, 90638-90650.	1.8	17
72	Inhibition of HSF1 suppresses the growth of hepatocarcinoma cell lines <i>in vitro</i> and AKT-driven hepatocarcinogenesis in mice. Oncotarget, 2017, 8, 54149-54159.	1.8	24

#	Article	IF	CITATIONS
73	Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget, 2017, 8, 73433-73447.	1.8	26
74	Activated mutant forms of <scp>PIK</scp> 3 <scp>CA</scp> cooperate with RasV12 or câ€Met to induce liver tumour formation in mice via <scp>AKT</scp> 2/ <scp>mTORC</scp> 1 cascade. Liver International, 2016, 36, 1176-1186.	3.9	26
75	PI3K/AKT/mTORâ€dependent stabilization of oncogenic farâ€upstream element binding proteins in hepatocellular carcinoma cells. Hepatology, 2016, 63, 813-826.	7.3	52
76	Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and pointâ€mutant β atenin. Hepatology, 2016, 64, 1587-1605.	7.3	92
77	Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Scientific Reports, 2016, 6, 20484.	3.3	100
78	Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology, 2016, 63, 1900-1913.	7.3	82
79	[11C]acetate PET Imaging is not Always Associated with Increased Lipogenesis in Hepatocellular Carcinoma in Mice. Molecular Imaging and Biology, 2016, 18, 360-367.	2.6	11
80	Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. Journal of Hepatology, 2016, 64, 333-341.	3.7	115
81	Monocytes promote liver carcinogenesis in an oncogene-specific manner. Journal of Hepatology, 2016, 64, 881-890.	3.7	13
82	Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice. World Journal of Gastroenterology, 2016, 22, 2071.	3.3	11
83	4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and Nâ€Ras protoâ€oncogenes in mice. Hepatology, 2015, 61, 200-213.	7.3	63
84	Distinct anti-oncogenic effect of various microRNAs in different mouse models of liver cancer. Oncotarget, 2015, 6, 6977-6988.	1.8	49
85	Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget, 2015, 6, 10102-10115.	1.8	61
86	lLâ€33 facilitates oncogeneâ€induced cholangiocarcinoma in mice by an interleukinâ€6â€sensitive mechanism. Hepatology, 2015, 61, 1627-1642.	7.3	115
87	Differential effects of targeting Notch receptors in a mouse model of liver cancer. Hepatology, 2015, 61, 942-952.	7.3	85
88	SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget, 2015, 6, 2222-2234.	1.8	27
89	EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatology, 2014, 59, 1886-1899.	7.3	74
90	Activation of β-Catenin and Yap1 in Human Hepatoblastoma and Induction of Hepatocarcinogenesis in Mice. Gastroenterology, 2014, 147, 690-701.	1.3	249

#	Article	IF	CITATIONS
91	Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research. American Journal of Pathology, 2014, 184, 912-923.	3.8	271
92	Yes-Associated Protein Up-regulates Jagged-1 and Activates the NOTCH Pathway in Human Hepatocellular Carcinoma. Gastroenterology, 2013, 144, 1530-1542.e12.	1.3	278
93	Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: Implications for the treatment of human liver cancer. Cell Cycle, 2013, 12, 1999-2010.	2.6	82
94	On the role of notch1 and adult hepatocytes in murine intrahepatic cholangiocarcinoma development. Hepatology, 2013, 58, 1857-1859.	7.3	9
95	SCD1 Expression Is Dispensable for Hepatocarcinogenesis Induced by AKT and Ras Oncogenes in Mice. PLoS ONE, 2013, 8, e75104.	2.5	17
96	Inactivation of Spry2 accelerates AKT-driven hepatocarcinogenesis via activation of MAPK and PKM2 pathways. Journal of Hepatology, 2012, 57, 577-583.	3.7	45
97	The Metabolic Profile of Tumors Depends on Both the Responsible Genetic Lesion and Tissue Type. Cell Metabolism, 2012, 15, 157-170.	16.2	553
98	Oncogene-specific formation of chemoresistant murine hepatic cancer stem cells. Hepatology, 2012, 56, 1331-1341.	7.3	87
99	Integration of DNA Copy Number Alterations and Transcriptional Expression Analysis in Human Gastric Cancer. PLoS ONE, 2012, 7, e29824.	2.5	56
100	AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene) Tj ETQqO	0 0 rgBT /(7.3	Dverlock 10 T 183
101	55, 833-845. Cholangiocarcinomas can originate from hepatocytes in mice. Journal of Clinical Investigation, 2012, 122, 2911-2915.	8.2	385
102	Bmi1 Is Required for Hepatic Progenitor Cell Expansion and Liver Tumor Development. PLoS ONE, 2012, 7, e46472.	2.5	31
103	Increased Lipogenesis, Induced by AKT-mTORC1-RPS6 Signaling, Promotes Development of Human Hepatocellular Carcinoma. Gastroenterology, 2011, 140, 1071-1083.e5.	1.3	453
104	Synergistic role of sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis. Hepatology, 2010, 52, 506-517.	7.3	52
105	Bmi1 Functions as an Oncogene Independent of Ink4A/Arf Repression in Hepatic Carcinogenesis. Molecular Cancer Research, 2009, 7, 1937-1945.	3.4	64
106	Role of Cyclin D1 as a Mediator of c-Met– and β-Catenin–Induced Hepatocarcinogenesis. Cancer Research, 2009, 69, 253-261.	0.9	74
107	New tools for functional genomic analysis. Drug Discovery Today, 2009, 14, 754-760.	6.4	32
108	Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology, 2008, 47, 1200-1210.	7.3	94

#	Article	IF	CITATIONS
109	Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14771-14776.	7.1	193
110	An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene, 2005, 24, 3737-3747.	5.9	122
111	Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma. Carcinogenesis, 2005, 26, 2050-2057.	2.8	123
112	Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clinical Cancer Research, 2005, 11, 551-6.	7.0	82
113	Novel endothelial cell markers in hepatocellular carcinoma. Modern Pathology, 2004, 17, 1198-1210.	5.5	78
114	Gene Expression Patterns in Human Liver Cancers. Molecular Biology of the Cell, 2002, 13, 1929-1939.	2.1	779
115	Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor. Cancer Research, 2002, 62, 4711-21.	0.9	78