Frank Le Foll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6982112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Centrosome, the Newly Identified Passenger through Tunneling Nanotubes, Increases Binucleation and Proliferation Marker in Receiving Cells. International Journal of Molecular Sciences, 2021, 22, 9680.	4.1	5
2	Comparison of viability and phagocytic responses of hemocytes withdrawn from the bivalves Mytilus edulis and Dreissena polymorpha, and exposed to human parasitic protozoa. International Journal for Parasitology, 2020, 50, 75-83.	3.1	13
3	First evidence of cytotoxic effects of human protozoan parasites on zebra mussel (Dreissena) Tj ETQq1 1 0.7843	14.rgBT /0 2.4	Overlock 10
4	Direct and indirect P-glycoprotein transfers in MCF7 breast cancer cells. Journal of Theoretical Biology, 2019, 461, 239-253.	1.7	2
5	Use of sperm DNA integrity as a marker for exposure to contamination in Palaemon serratus (Pennant) Tj ETQq1 I	1 0.78431 11.3	4 ₁₉ BT /Ove
6	Multixenobiotic resistance in Mytilus edulis : Molecular and functional characterization of an ABCG2- type transporter in hemocytes and gills. Aquatic Toxicology, 2018, 195, 88-96.	4.0	3
7	Highly polluted life history and acute heat stress, a hazardous mix for blue mussels. Marine Pollution Bulletin, 2018, 135, 594-606.	5.0	6
8	Infection dynamics of a V.Âsplendidus strain pathogenic to Mytilus edulis: InÂvivo and inÂvitro interactions with hemocytes. Fish and Shellfish Immunology, 2017, 70, 515-523.	3.6	18
9	Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels. Aquatic Toxicology, 2016, 175, 192-204.	4.0	19
10	First evidence for a Vibrio strain pathogenic to Mytilus edulis altering hemocyte immune capacities. Developmental and Comparative Immunology, 2016, 57, 107-119.	2.3	33
11	Consequences of acclimation on the resistance to acute thermal stress: Proteomic focus on mussels from pristine site. Marine Environmental Research, 2016, 121, 64-73.	2.5	6
12	Structural and functional analysis of tunneling nanotubes (TnTs) using <i>g</i> CW STED and <i>g</i> confocal approaches. Biology of the Cell, 2015, 107, 419-425.	2.0	42
13	Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry. International Journal of Molecular Sciences, 2015, 16, 14318-14337.	4.1	2
14	2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes, 2015, 3, 3-41.	3.5	15
15	Effects of aging on structure and stability of TiO2 nanoparticle-containing oil-in-water emulsions. International Journal of Pharmaceutics, 2014, 461, 89-96.	5.2	15
16	The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes. Aquatic Toxicology, 2014, 153, 98-109.	4.0	20
17	Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. Journal of Translational Medicine, 2013, 11, 94.	4.4	359
18	Cell tracking and velocimetric parameters analysis as an approach to assess activity of mussel (Mytilus edulis) hemocytes in vitro. Cytotechnology, 2013, 65, 749-758.	1.6	20

Frank Le Foll

#	Article	IF	CITATIONS
19	P-Glycoprotein-Activity Measurements in Multidrug Resistant Cell Lines: Single-Cell versus Single-Well Population Fluorescence Methods. BioMed Research International, 2013, 2013, 1-11.	1.9	13
20	Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in MCF-7 Breast Cancer Cells. Journal of Biological Chemistry, 2012, 287, 7374-7387.	3.4	114
21	Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model. Biology Direct, 2011, 6, 5.	4.6	54
22	AN <i>IN VITRO</i> CELL POPULATION DYNAMICS MODEL INCORPORATING CELL SIZE, QUIESCENCE, AND CONTACT INHIBITION. Mathematical Models and Methods in Applied Sciences, 2011, 21, 871-892.	3.3	27
23	Exploring modulation of action potential firing by artificial graft of fast GABAergic autaptic afferences in hypophyseal neuroendocrine melanotrope cells. Journal of Physiology (Paris), 2010, 104, 99-106.	2.1	0
24	Characterisation of Mytilus edulis hemocyte subpopulations by single cell time-lapse motility imaging. Fish and Shellfish Immunology, 2010, 28, 372-386.	3.6	49
25	Analysis of a Model for Transfer Phenomena in Biological Populations. SIAM Journal on Applied Mathematics, 2009, 70, 40-62.	1.8	11
26	Regulation of volume-sensitive Clâ^' channels in multi-drug resistant MCF7 cells. Biochemical and Biophysical Research Communications, 2005, 334, 1266-1278.	2.1	12
27	Cell responses to xenobiotics: Comparison of MCF7 multi-drug- and mussel blood cell multi-xenobiotic-defense mechanisms. Marine Environmental Research, 2004, 58, 209-213.	2.5	14
28	Rhodamine exclusion activity in primary cultured turbot (Scophthalmus maximus) hepatocytes. Marine Environmental Research, 2002, 54, 443-447.	2.5	8
29	Contribution of changes in the chloride driving force to the fading of <i>I</i> _{GABA} in frog melanotrophs. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E430-E443.	3.5	7
30	Gramicidin-perforated patch revealed depolarizing effect of GABA in cultured frog melanotrophs. Journal of Physiology, 1998, 507, 55-69.	2.9	21
31	Pregnane Steroid Modulation of GABAA Receptor in Frog Pituitary Melanotrophs. Annals of the New York Academy of Sciences, 1998, 839, 235-238.	3.8	1
32	Electrophysiological effects of various neuroactive steroids on the GABAA receptor in pituitary melanotrope cells. European Journal of Pharmacology, 1997, 331, 303-311.	3.5	38
33	Multiple Modulatory Effects of the Neuroactive Steroid Pregnanolone on GABAAReceptor in Frog Pituitary Melanotrophs. Journal of Physiology, 1997, 504, 387-400.	2.9	28
34	Adenosine Inhibits L- and N-Type Calcium Channels in Pituitary Melanotrophs. Evidence for the Involvement of a G Protein in Calcium Channel Gating. Journal of Neuroendocrinology, 1996, 8, 85-91.	2.6	15