
Michela Gallagher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6981977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Individual differences in neurocognitive aging in outbred male and female long-evans rats Behavioral Neuroscience, 2022, 136, 13-18.	1.2	4
2	Lateral entorhinal cortex dysfunction in amnestic mild cognitive impairment. Neurobiology of Aging, 2022, 112, 151-160.	3.1	13
3	Loss of functional heterogeneity along the CA3 transverse axis in aging. Current Biology, 2022, 32, 2681-2693.e4.	3.9	5
4	Heterogeneity of Age-Related Neural Hyperactivity along the CA3 Transverse Axis. Journal of Neuroscience, 2021, 41, 663-673.	3.6	18
5	Decreased investigatory head scanning during exploration in learning-impaired, aged rats. Neurobiology of Aging, 2021, 98, 1-9.	3.1	1
6	Spatial learning in male and female Long-Evans rats Behavioral Neuroscience, 2021, 135, 4-7.	1.2	29
7	Effect of aging differs for memory of object identity and object position within a spatial context. Learning and Memory, 2021, 28, 239-247.	1.3	5
8	All-or-none disconnection of pyramidal inputs onto parvalbumin-positive interneurons gates ocular dominance plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
9	Afterhyperpolarization amplitude in CA1 pyramidal cells of aged Long-Evans rats characterized for individual differences. Neurobiology of Aging, 2020, 96, 43-48.	3.1	2
10	Using internal memory representations in associative learning to study hallucination-like phenomenon. Neurobiology of Learning and Memory, 2020, 175, 107319.	1.9	5
11	Engagement of the Lateral Habenula in the Association of a Conditioned Stimulus with the Absence of an Unconditioned Stimulus. Neuroscience, 2020, 444, 136-148.	2.3	5
12	Comparison of male and female patients with amnestic mild cognitive impairment: Hippocampal hyperactivity and pattern separation memory performance. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12043.	2.4	2
13	Probing for Conditioned Hallucinations Through Neural Activation in a Ketamine Mouse Model of Schizophrenia. Neuroscience Bulletin, 2020, 36, 937-941.	2.9	4
14	Significance of inhibitory recruitment in aging with preserved cognition: limiting gamma-aminobutyric acid type A α5 function produces memory impairment. Neurobiology of Aging, 2020, 91, 1-4.	3.1	16
15	What are the threats to successful brain and cognitive aging?. Neurobiology of Aging, 2019, 83, 130-134.	3.1	20
16	Reduced cognitive performance in aged rats correlates with increased excitation/inhibition ratio in the dentate gyrus in response to lateral entorhinal input. Neurobiology of Aging, 2019, 82, 120-127.	3.1	20
17	Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment. NeuroImage: Clinical, 2019, 21, 101617.	2.7	46
18	Aged rats with preserved memory dynamically recruit hippocampal inhibition in a local/global cue mismatch environment. Neurobiology of Aging, 2019, 76, 151-161.	3.1	21

#	Article	IF	CITATIONS
19	Aged rats with intact memory show distinctive recruitment in cortical regions relative to young adults in a cue mismatch task Behavioral Neuroscience, 2019, 133, 537-544.	1.2	4
20	Treatment with levetiracetam improves cognition in a ketamine rat model of schizophrenia. Schizophrenia Research, 2018, 193, 119-125.	2.0	23
21	Enhanced postsynaptic inhibitory strength in hippocampal principal cells in high-performing aged rats. Neurobiology of Aging, 2018, 70, 92-101.	3.1	22
22	A greater tendency for representation mediated learning in a ketamine mouse model of schizophrenia Behavioral Neuroscience, 2018, 132, 106-113.	1.2	9
23	Increased hippocampal activation in ApoE-4 carriers and non-carriers with amnestic mild cognitive impairment. NeuroImage: Clinical, 2017, 13, 237-245.	2.7	41
24	Heightened cortical excitability in aged rodents with memory impairment. Neurobiology of Aging, 2017, 54, 144-151.	3.1	70
25	Targeting Neural Hyperactivity as a Treatment to Stem Progression of Late-Onset Alzheimer's Disease. Neurotherapeutics, 2017, 14, 662-676.	4.4	77
26	Entorhinal and transentorhinal atrophy in mild cognitive impairment using longitudinal diffeomorphometry. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 9, 41-50.	2.4	24
27	Dimensional assessment of behavioral changes in the cuprizone short-term exposure model for psychosis. Neuroscience Research, 2016, 107, 70-74.	1.9	12
28	Metabotropic Glutamate Receptors Induce a Form of LTP Controlled by Translation and Arc Signaling in the Hippocampus. Journal of Neuroscience, 2016, 36, 1723-1729.	3.6	62
29	Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze Behavioral Neuroscience, 2015, 129, 540-548.	1.2	309
30	Neuroanatomical and behavioral deficits in mice haploinsufficient for Pericentriolar material 1 (Pcm1). Neuroscience Research, 2015, 98, 45-49.	1.9	17
31	Head west or left, east or right: interactions between memory systems in neurocognitive aging. Neurobiology of Aging, 2015, 36, 3067-3078.	3.1	36
32	Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage: Clinical, 2015, 7, 688-698.	2.7	229
33	Basal forebrain neuronal inhibition enables rapid behavioral stopping. Nature Neuroscience, 2015, 18, 1501-1508.	14.8	20
34	Proactive and reactive inhibitory control in rats. Frontiers in Neuroscience, 2014, 8, 104.	2.8	25
35	Ageâ€associated changes in hippocampalâ€dependent cognition in <scp>D</scp> iversity <scp>O</scp> utbred mice. Hippocampus, 2014, 24, 1300-1307.	1.9	33
36	A fine balance: Regulation of hippocampal Arc/Arg3.1 transcription, translation and degradation in a rat model of normal cognitive aging. Neurobiology of Learning and Memory, 2014, 115, 58-67.	1.9	38

#	Article	IF	CITATIONS
37	Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12462-12467.	7.1	88
38	Integrity of mGluR-LTD in the Associative/Commissural Inputs to CA3 Correlates with Successful Aging in Rats. Journal of Neuroscience, 2013, 33, 12670-12678.	3.6	29
39	CREB-binding protein levels in the rat hippocampus fail to predict chronological or cognitive aging. Neurobiology of Aging, 2013, 34, 832-844.	3.1	12
40	Selective GABAA $\hat{I}_{\pm}5$ positive allosteric modulators improve cognitive function in aged rats with memory impairment. Neuropharmacology, 2013, 64, 145-152.	4.1	107
41	Hilar interneuron vulnerability distinguishes aged rats with memory impairment. Journal of Comparative Neurology, 2013, 521, 3508-3523.	1.6	110
42	Selective immunotoxic lesions of basal forebrain cholinergic cells: Effects on learning and memory in rats Behavioral Neuroscience, 2013, 127, 619-627.	1.2	113
43	Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16181-16186.	7.1	33
44	Behaviorally Activated mRNA Expression Profiles Produce Signatures of Learning and Enhanced Inhibition in Aged Rats with Preserved Memory. PLoS ONE, 2013, 8, e83674.	2.5	34
45	Characterization of CpG island DNA methylation of impairment-related genes in a rat model of cognitive aging. Epigenetics, 2012, 7, 1008-1019.	2.7	48
46	Clinical Trials: New Opportunities. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 773-780.	3.6	4
47	Reduction of Hippocampal Hyperactivity Improves Cognition in Amnestic Mild Cognitive Impairment. Neuron, 2012, 74, 467-474.	8.1	736
48	Age-Related Memory Impairment Is Associated with Disrupted Multivariate Epigenetic Coordination in the Hippocampus. PLoS ONE, 2012, 7, e33249.	2.5	70
49	Aging reduces total neuron number in the dorsal component of the rodent prefrontal cortex. Journal of Comparative Neurology, 2012, 520, 1318-1326.	1.6	52
50	Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 2011, 21, 968-979.	1.9	444
51	Prominent hippocampal CA3 gene expression profile in neurocognitive aging. Neurobiology of Aging, 2011, 32, 1678-1692.	3.1	78
52	Interference with reelin signaling in the lateral entorhinal cortex impairs spatial memory. Neurobiology of Learning and Memory, 2011, 96, 150-155.	1.9	31
53	Assessment of cognition in early dementia. Alzheimer's and Dementia, 2011, 7, e60-e76.	0.8	75
54	Episodic memory on the path to Alzheimer's disease. Current Opinion in Neurobiology, 2011, 21, 929-934.	4.2	114

#	Article	IF	CITATIONS
55	Greater effort boosts the affective taste properties of food. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1450-1456.	2.6	39
56	Mindspan: Lessons from Rat Models of Neurocognitive Aging. ILAR Journal, 2011, 52, 32-40.	1.8	46
57	Cognitive Decline Is Associated with Reduced Reelin Expression in the Entorhinal Cortex of Aged Rats. Cerebral Cortex, 2011, 21, 392-400.	2.9	85
58	Differences in hippocampal CREB phosphorylation in trace fear conditioning of two inbred mouse strains. Brain Research, 2010, 1345, 156-163.	2.2	11
59	The central amygdala projection to the substantia nigra reflects prediction error information in appetitive conditioning. Learning and Memory, 2010, 17, 531-538.	1.3	55
60	Bridging Neurocognitive Aging and Disease Modification: Targeting Functional Mechanisms of Memory Impairment. Current Alzheimer Research, 2010, 7, 197-199.	1.4	26
61	Treatment Strategies Targeting Excess Hippocampal Activity Benefit Aged Rats with Cognitive Impairment. Neuropsychopharmacology, 2010, 35, 1016-1025.	5.4	146
62	High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. NeuroImage, 2010, 51, 1242-1252.	4.2	436
63	Painful stimuli evoke potentials recorded from the medial temporal lobe in humans. Neuroscience, 2010, 165, 1402-1411.	2.3	32
64	An analysis of licking microstructure in three strains of mice. Appetite, 2010, 54, 320-330.	3.7	43
65	Associatively Learned Representations of Taste Outcomes Activate Taste-Encoding Neural Ensembles in Gustatory Cortex. Journal of Neuroscience, 2009, 29, 15386-15396.	3.6	52
66	Central, But Not Basolateral, Amygdala Is Critical for Control of Feeding by Aversive Learned Cues. Journal of Neuroscience, 2009, 29, 15205-15212.	3.6	96
67	The Basolateral Amygdala Is Critical to the Expression of Pavlovian and Instrumental Outcome-Specific Reinforcer Devaluation Effects. Journal of Neuroscience, 2009, 29, 696-704.	3.6	125
68	Hippocampal lesions interfere with long-trace taste aversion conditioning. Physiology and Behavior, 2009, 98, 103-107.	2.1	19
69	Assessing the role of the growth hormone secretagogue receptor in motivational learning and food intake Behavioral Neuroscience, 2009, 123, 1058-1065.	1.2	16
70	A role for alphaâ€aminoâ€3â€hydroxyâ€5â€methylisoxazoleâ€4â€propionic acid GluR1 phosphorylation in the modulatory effects of appetitive reward cues on goalâ€directed behavior. European Journal of Neuroscience, 2008, 27, 3284-3291.	2.6	28
71	Age-related spatial learning impairment is unrelated to spinophilin immunoreactive spine number and protein levels in rat hippocampus. Neurobiology of Aging, 2008, 29, 1256-1264.	3.1	17
72	A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning. Behavioural Brain Research, 2008, 191, 178-183.	2.2	40

#	Article	IF	CITATIONS
73	The brainâ€derived neurotrophic factor receptor TrkB is critical for the acquisition but not expression of conditioned incentive value. European Journal of Neuroscience, 2008, 28, 997-1002.	2.6	20
74	Potential Adaptive Function for Altered Long-Term Potentiation Mechanisms in Aging Hippocampus. Journal of Neuroscience, 2008, 28, 8034-8039.	3.6	95
75	Cognitive Aging: A Common Decline of Episodic Recollection and Spatial Memory in Rats. Journal of Neuroscience, 2008, 28, 8945-8954.	3.6	90
76	Learning strategy selection in the water maze and hippocampal CREB phosphorylation differ in two inbred strains of mice. Learning and Memory, 2008, 15, 183-188.	1.3	38
77	Rapid encoding of new information alters the profile of plasticity-related mRNA transcripts in the hippocampal CA3 region. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10601-10606.	7.1	21
78	Rat Orbitofrontal Cortex Separately Encodes Response and Outcome Information during Performance of Goal-Directed Behavior. Journal of Neuroscience, 2008, 28, 5127-5138.	3.6	54
79	Medial Prefrontal Cortex Is Necessary for an Appetitive Contextual Conditioned Stimulus to Promote Eating in Sated Rats. Journal of Neuroscience, 2007, 27, 6436-6441.	3.6	105
80	Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14501-14506.	7.1	394
81	Learned contextual cue potentiates eating in rats. Physiology and Behavior, 2007, 90, 362-367.	2.1	85
82	Control of food consumption by learned cues: A forebrain–hypothalamic network. Physiology and Behavior, 2007, 91, 397-403.	2.1	74
83	Muscarinic receptor-mediated GTP–Eu binding in the hippocampus and prefrontal cortex is correlated with spatial memory impairment in aged rats. Neurobiology of Aging, 2007, 28, 619-626.	3.1	31
84	Genetic background differences and nonassociative effects in mouse trace fear conditioning. Learning and Memory, 2007, 14, 597-605.	1.3	43
85	Neural Encoding in the Orbitofrontal Cortex Related to Goalâ€Directed Behavior. Annals of the New York Academy of Sciences, 2007, 1121, 193-215.	3.8	28
86	Role of Substantia Nigra-Amygdala Connections in Surprise-Induced Enhancement of Attention. Journal of Neuroscience, 2006, 26, 6077-6081.	3.6	75
87	Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends in Neurosciences, 2006, 29, 662-670.	8.6	286
88	Encoding Changes in Orbitofrontal Cortex in Reversal-Impaired Aged Rats. Journal of Neurophysiology, 2006, 95, 1509-1517.	1.8	98
89	Aging causes partial loss of basal forebrain but no loss of pontine reticular cholinergic neurons. NeuroReport, 2006, 17, 1819-1823.	1.2	37
90	A specific amyloid-β protein assembly in the brain impairs memory. Nature, 2006, 440, 352-357.	27.8	2,662

#	Article	IF	CITATIONS
91	Individual differences in neurocognitive aging of the medial temporal lobe. Age, 2006, 28, 221-233.	3.0	49
92	Different Roles for Amygdala Central Nucleus and Substantia Innominata in the Surprise-Induced Enhancement of Learning. Journal of Neuroscience, 2006, 26, 3791-3797.	3.6	93
93	Amygdala Central Nucleus Function Is Necessary for Learning, but Not Expression, of Conditioned Auditory Orienting Behavioral Neuroscience, 2005, 119, 202-212.	1.2	33
94	Orbitofrontal Lesions Impair Use of Cue-Outcome Associations in a Devaluation Task Behavioral Neuroscience, 2005, 119, 317-322.	1.2	171
95	NMDA receptor–independent long-term depression correlates with successful aging in rats. Nature Neuroscience, 2005, 8, 1657-1659.	14.8	111
96	Spatial memory in middle-aged female rats: Assessment of estrogen replacement after ovariectomy. Brain Research, 2005, 1052, 163-173.	2.2	34
97	Amygdalar and Prefrontal Pathways to the Lateral Hypothalamus Are Activated by a Learned Cue That Stimulates Eating. Journal of Neuroscience, 2005, 25, 8295-8302.	3.6	176
98	Multiple Receptors Coupled to Phospholipase C Gate Long-Term Depression in Visual Cortex. Journal of Neuroscience, 2005, 25, 11433-11443.	3.6	88
99	Lesions of Orbitofrontal Cortex Impair Rats' Differential Outcome Expectancy Learning But Not Conditioned Stimulus-Potentiated Feeding. Journal of Neuroscience, 2005, 25, 4626-4632.	3.6	74
100	Age-Associated Alterations of Hippocampal Place Cells Are Subregion Specific. Journal of Neuroscience, 2005, 25, 6877-6886.	3.6	251
101	Role of Amygdalo-Nigral Circuitry in Conditioning of a Visual Stimulus Paired with Food. Journal of Neuroscience, 2005, 25, 3881-3888.	3.6	99
102	Place cells of aged rats in two visually identical compartments. Neurobiology of Aging, 2005, 26, 1099-1106.	3.1	16
103	Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex. Neuron, 2005, 46, 321-331.	8.1	201
104	More Is Less: Neurogenesis and Age-Related Cognitive Decline in Long-Evans Rats. Science of Aging Knowledge Environment: SAGE KE, 2005, 2005, re2-re2.	0.8	28
105	Cognitive Aging and the Hippocampus: How Old Rats Represent New Environments. Journal of Neuroscience, 2004, 24, 3870-3878.	3.6	91
106	Reduction in Size of Perforated Postsynaptic Densities in Hippocampal Axospinous Synapses and Age-Related Spatial Learning Impairments. Journal of Neuroscience, 2004, 24, 7648-7653.	3.6	182
107	Amygdala central nucleus function is necessary for learning but not expression of conditioned visual orienting. European Journal of Neuroscience, 2004, 20, 240-248.	2.6	46
108	Amygdala–frontal interactions and reward expectancy. Current Opinion in Neurobiology, 2004, 14, 148-155.	4.2	353

#	Article	IF	CITATIONS
109	Transcriptional mechanisms of hippocampal aging. Experimental Gerontology, 2004, 39, 1613-1622.	2.8	19
110	SGS742: the first GABAB receptor antagonist in clinical trials. Biochemical Pharmacology, 2004, 68, 1479-1487.	4.4	167
111	Effects of aging on the hippocampal formation in a naturally occurring animal model of mild cognitive impairment. Experimental Gerontology, 2003, 38, 71-77.	2.8	95
112	Lesions of basolateral amygdala impair extinction of CS motivational value, but not of explicit conditioned responses, in Pavlovian appetitive second-order conditioning. European Journal of Neuroscience, 2003, 17, 160-166.	2.6	37
113	Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. European Journal of Neuroscience, 2003, 17, 1680-1694.	2.6	194
114	Phosphorylation of the AMPA Receptor GluR1 Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory. Cell, 2003, 112, 631-643.	28.9	699
115	Neural Encoding in Ventral Striatum during Olfactory Discrimination Learning. Neuron, 2003, 38, 625-636.	8.1	196
116	Encoding Predicted Outcome and Acquired Value in Orbitofrontal Cortex during Cue Sampling Depends upon Input from Basolateral Amygdala. Neuron, 2003, 39, 855-867.	8.1	425
117	Lesions of Orbitofrontal Cortex and Basolateral Amygdala Complex Disrupt Acquisition of Odor-Guided Discriminations and Reversals. Learning and Memory, 2003, 10, 129-140.	1.3	270
118	Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task. Journal of Neuroscience, 2003, 23, 11078-11084.	3.6	417
119	Amygdala Subsystems and Control of Feeding Behavior by Learned Cues. Annals of the New York Academy of Sciences, 2003, 985, 251-262.	3.8	76
120	The effects of amygdala lesions on conditioned stimulus-potentiated eating in rats. Physiology and Behavior, 2002, 76, 117-129.	2.1	105
121	Teaching old rats new tricks: age-related impairments in olfactory reversal learning. Neurobiology of Aging, 2002, 23, 555-564.	3.1	117
122	Amygdalo-Hypothalamic Circuit Allows Learned Cues to Override Satiety and Promote Eating. Journal of Neuroscience, 2002, 22, 8748-8753.	3.6	176
123	Individual differences in spatial memory among aged rats are related to hippocampal PKC? immunoreactivity. Hippocampus, 2002, 12, 285-289.	1.9	57
124	Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus, 2002, 12, 386-397.	1.9	80
125	The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. European Journal of Neuroscience, 2002, 15, 1841-1853.	2.6	106
126	Decreased glucocorticoid receptor mRNA and dysfunction of HPA axis in rats after removal of the cholinergic innervation to hippocampus European Journal of Neuroscience, 2002, 16, 1399-1404.	2.6	32

#	Article	IF	CITATIONS
127	Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive Pavlovian second-order conditioned responses Behavioral Neuroscience, 2002, 116, 267-275.	1.2	96
128	Hypothalamic–pituitary–adrenal axis function and corticosterone receptor expression in behaviourally characterized young and aged Long–Evans rats. European Journal of Neuroscience, 2001, 14, 1739-1751.	2.6	94
129	Hippocampal dependent learning ability correlates with N-methyl-D-aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats. Journal of Comparative Neurology, 2001, 432, 230-243.	1.6	104
130	Visualization of muscarinic receptor-mediated phosphoinositide turnover in the hippocampus of young and aged, learning-impaired Long Evans rats. Hippocampus, 2001, 11, 741-746.	1.9	20
131	Circuit-Specific Alterations in Hippocampal Synaptophysin Immunoreactivity Predict Spatial Learning Impairment in Aged Rats. Journal of Neuroscience, 2000, 20, 6587-6593.	3.6	360
132	Changes in Functional Connectivity in Orbitofrontal Cortex and Basolateral Amygdala during Learning and Reversal Training. Journal of Neuroscience, 2000, 20, 5179-5189.	3.6	208
133	Lesions of the Amygdala Central Nucleus Alter Performance on a Selective Attention Task. Journal of Neuroscience, 2000, 20, 6701-6706.	3.6	111
134	Metabotropic Glutamate Receptor-Mediated Hippocampal Phosphoinositide Turnover Is Blunted in Spatial Learning-Impaired Aged Rats. Journal of Neuroscience, 1999, 19, 9604-9610.	3.6	84
135	Neural Encoding in Orbitofrontal Cortex and Basolateral Amygdala during Olfactory Discrimination Learning. Journal of Neuroscience, 1999, 19, 1876-1884.	3.6	539
136	Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning. Journal of Neuroscience, 1999, 19, 6610-6614.	3.6	579
137	Functions of the Amygdala and Related Forebrain Areas in Attention and Cognition. Annals of the New York Academy of Sciences, 1999, 877, 397-411.	3.8	62
138	Hippocampal lesions interfere with Pavlovian negative occasion setting. , 1999, 9, 143-157.		87
139	Morphometric studies of the aged hippocampus: I. Volumetric analysis in behaviorally characterized rats. Journal of Comparative Neurology, 1999, 403, 459-470.	1.6	84
140	Amygdala circuitry in attentional and representational processes. Trends in Cognitive Sciences, 1999, 3, 65-73.	7.8	571
141	Thalamic and basal forebrain cholinergic connections of the rat posterior parietal cortex. NeuroReport, 1999, 10, 941-945.	1.2	33
142	Selective removal of cholinergic neurons in the basal forebrain alters cued target detection. NeuroReport, 1999, 10, 3119-3123.	1.2	71
143	Morphometric studies of the aged hippocampus: I. Volumetric analysis in behaviorally characterized rats. Journal of Comparative Neurology, 1999, 403, 459-470.	1.6	2
144	Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience, 1998, 1, 155-159.	14.8	812

#	Article	IF	CITATIONS
145	Hippocampal lesions enhance configural learning by reducing proactive interference. , 1998, 8, 138-146.		36
146	A re-examination of the role of basal forebrain cholinergic neurons in spatial working memory. Neuropharmacology, 1998, 37, 481-487.	4.1	99
147	Individual Differences in Spatial Memory and Striatal ChAT Activity among Young and Aged Rats. Neurobiology of Learning and Memory, 1998, 70, 314-327.	1.9	50
148	Removal of Cholinergic Input to Rat Posterior Parietal Cortex Disrupts Incremental Processing of Conditioned Stimuli. Journal of Neuroscience, 1998, 18, 8038-8046.	3.6	192
149	Animal models of memory impairment. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1711-1717.	4.0	21
150	THE USE OF ANIMAL MODELS TO STUDY THE EFFECTS OF AGING ON COGNITION. Annual Review of Psychology, 1997, 48, 339-370.	17.7	379
151	Brain Aging: Changes in the Nature of Information Coding by the Hippocampus. Journal of Neuroscience, 1997, 17, 5155-5166.	3.6	157
152	The Role of an Amygdalo-Nigrostriatal Pathway in Associative Learning. Journal of Neuroscience, 1997, 17, 3913-3919.	3.6	149
153	Disruption of Decrements in Conditioned Stimulus Processing by Selective Removal of Hippocampal Cholinergic Input. Journal of Neuroscience, 1997, 17, 5230-5236.	3.6	148
154	Neurobiological substrates of behavioral decline: Models and data analytic strategies for individual differences in aging. Neurobiology of Aging, 1996, 17, 491-495.	3.1	76
155	Author's response to commentaries. Neurobiology of Aging, 1996, 17, 500.	3.1	0
156	The amygdala and emotion. Current Opinion in Neurobiology, 1996, 6, 221-227.	4.2	349
157	Neurotoxic Lesions of Basolateral, But Not Central, Amygdala Interfere with Pavlovian Second-Order Conditioning and Reinforcer Devaluation Effects. Journal of Neuroscience, 1996, 16, 5256-5265.	3.6	545
158	Molecular Indices of Neuronal and Glial Plasticity in the Hippocampal Formation in a Rodent Model of Age-Induced Spatial Learning Impairment. Journal of Neuroscience, 1996, 16, 3427-3443.	3.6	102
159	Intact spatial learning following lesions of basal forebrain cholinergic neurons. NeuroReport, 1996, 7, 1417-1420.	1.2	107
160	Alterations in opiate receptor binding in the hippocampus of aged Long-Evans rats. Brain Research, 1996, 707, 22-30.	2.2	16
161	Entorhinal-perirhinal lesions impair performance of rats on two versions of place learning in the Morris water maze Behavioral Neuroscience, 1995, 109, 3-9.	1.2	110
162	Ageing: the cholinergic hypothesis of cognitive decline. Current Opinion in Neurobiology, 1995, 5, 161-168.	4.2	204

#	Article	IF	CITATIONS
163	Mesostriatal dopamine markers in aged Long-Evans rats with sensorimotor impairment. Neurobiology of Aging, 1995, 16, 175-186.	3.1	27
164	Hippocampal muscarinic receptor function in spatial learning-impaired aged rats. Neurobiology of Aging, 1995, 16, 955-963.	3.1	43
165	Cognition and Hippocampal Systems in Aging:Animal Models. , 1995, , 103-126.		14
166	Expression of insulin-like growth factor binding protein-4 and -5 mRNAs in adult rat forebrain. Journal of Comparative Neurology, 1994, 339, 91-105.	1.6	58
167	The development of neurobiological models for cognitive decline in aging. Seminars in Neuroscience, 1994, 6, 351-358.	2.2	12
168	Alterations in [3H]-kainate receptor binding in the hippocampal formation of aged long-evans rats. Hippocampus, 1993, 3, 269-277.	1.9	25
169	Animal models of normal aging: Relationship between cognitive decline and markers in hippocampal circuitry. Behavioural Brain Research, 1993, 57, 155-162.	2.2	171
170	A longitudinal study of reaction time performance in long-evans rats. Neurobiology of Aging, 1993, 14, 57-64.	3.1	37
171	Issues in the development of models for cognitive aging across primate and nonprimate species. Neurobiology of Aging, 1993, 14, 631-633.	3.1	16
172	The effects of aging on diurnal water intake and melatonin binding in the suprachiasmatic nucleus. Neuroscience Letters, 1993, 154, 149-152.	2.1	20
173	Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze Behavioral Neuroscience, 1993, 107, 618-626.	1.2	745
174	Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing Behavioral Neuroscience, 1993, 107, 246-253.	1.2	157
175	Effects of amygdala central nucleus lesions on blocking and unblocking Behavioral Neuroscience, 1993, 107, 235-245.	1.2	104
176	Effects of aging on the diurnal pattern of water intake in rats. Behavioral and Neural Biology, 1992, 58, 196-203.	2.2	20
177	Preserved configural learning and spatial learning impairment in rats with hippocampal damage. Hippocampus, 1992, 2, 81-88.	1.9	199
178	Decreased glutamate release correlates with elevated dynorphin content in the hippocampus of aged rats with spatial learning deficits. Hippocampus, 1991, 1, 391-397.	1.9	50
179	Markers for biogenic amines in the aged rat brain: Relationship to decline in spatial learning ability. Neurobiology of Aging, 1990, 11, 507-514.	3.1	150
180	Robinson et al. (1989) deserves another look. Cognitive, Affective and Behavioral Neuroscience, 1990, 18, 258-260.	1.3	10

#	Article	IF	CITATIONS
181	An age-related spatial learning deficit: Choline uptake distinguishes "impaired―and "unimpaired―rats. Neurobiology of Aging, 1988, 9, 363-369.	3.1	104
182	Spatial learning deficits in old rats: A model for memory decline in the aged. Neurobiology of Aging, 1988, 9, 549-556.	3.1	232
183	An evaluation of spatial information processing in aged rats Behavioral Neuroscience, 1987, 101, 3-12.	1.2	337
184	Scopolamine-disruption of radial arm maze performance: modification by noradrenergic depletion. Brain Research, 1987, 417, 59-69.	2.2	135
185	Opiate antagonist facilitation of time-dependent memory processes: Dependence upon intact norepinephrine function. Brain Research, 1985, 347, 284-290.	2.2	49
186	Effects of opiate antagonists on spatial memory in young and aged rats. Behavioral and Neural Biology, 1985, 44, 374-385.	2.2	64
187	Naloxone enhancement of memory processes: Effects of other opiate antagonists. Behavioral and Neural Biology, 1982, 35, 375-382.	2.2	98
188	Multiple unit activity recorded from amygdala central nucleus during Pavlovian heart rate conditioning in rabbit. Brain Research, 1982, 238, 457-462.	2.2	149
189	Cardiovascular responses elicited by electrical stimulation of the amygdala central nucleus in the rabbit. Brain Research, 1982, 234, 251-262.	2.2	189
190	Enkephalin analogue effects in the amygdala central nucleus on conditioned heart rate. Pharmacology Biochemistry and Behavior, 1982, 17, 217-222.	2.9	34
191	Effect of phentolamine administration into the amygdala complex of rats on time-dependent memory processes. Behavioral and Neural Biology, 1981, 31, 90-95.	2.2	49
192	Systemic and intraventricular naloxone administration: Effects on food and water intake. Behavioral and Neural Biology, 1981, 32, 334-342.	2.2	26
193	Opiate effects in the amygdala central nucleus on heart rate conditioning in rabbits. Pharmacology Biochemistry and Behavior, 1981, 14, 497-505.	2.9	82
194	β-adrenergic manipulation in amygdala central n. alters rabbit heart rate conditioning. Pharmacology Biochemistry and Behavior, 1980, 12, 419-426.	2.9	62
195	Amygdala central nucleus lesions: Effect on heart rate conditioning in the rabbit. Physiology and Behavior, 1979, 23, 1109-1117.	2.1	527
196	Opiates and memory. Trends in Neurosciences, 1979, 2, 177-180.	8.6	23
197	Retrograde amnesia and hippocampal stimulation: Dependence upon the nature of associations formed during conditioning. Behavioral Biology, 1978, 24, 1-23.	2.2	21