Asit K Pattnaik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6980056/publications.pdf

Version: 2024-02-01

72 papers 4,487 citations

35 h-index

109321

65 g-index

73 all docs

73 docs citations

73 times ranked 4607 citing authors

#	Article	IF	CITATIONS
1	Zika virus infection induces endoplasmic reticulum stress and apoptosis in placental trophoblasts. Cell Death Discovery, 2021, 7, 24.	4.7	24
2	Inhibition of Zika virus replication by G-quadruplex-binding ligands. Molecular Therapy - Nucleic Acids, 2021, 23, 691-701.	5.1	36
3	Palmitoleate Protects against Zika Virus-Induced Placental Trophoblast Apoptosis. Biomedicines, 2021, 9, 643.	3.2	6
4	Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Scientific Reports, 2021, 11, 12432.	3.3	15
5	Mechanistic Target of Rapamycin Signaling Activation Antagonizes Autophagy To Facilitate Zika Virus Replication. Journal of Virology, 2020, 94, .	3.4	22
6	Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines, 2020, 8, 266.	4.4	79
7	An Attenuated Zika Virus Encoding Non-Glycosylated Envelope (E) and Non-Structural Protein 1 (NS1) Confers Complete Protection against Lethal Challenge in a Mouse Model. Vaccines, 2019, 7, 112.	4.4	14
8	Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells, 2019, 8, 1082.	4.1	21
9	Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening. Antiviral Research, 2018, 151, 78-86.	4.1	53
10	Cross reactivity of immune responses to porcine reproductive and respiratory syndrome virus infection. Vaccine, 2017, 35, 782-788.	3.8	39
11	Zika Virus Encoding Nonglycosylated Envelope Protein Is Attenuated and Defective in Neuroinvasion. Journal of Virology, 2017, 91, .	3.4	88
12	Relative contribution of porcine reproductive and respiratory syndrome virus open reading frames $2\hat{a}\in 4$ to the induction of protective immunity. Vaccine, 2017, 35, 4408-4413.	3.8	7
13	Strategies to broaden the cross-protective efficacy of vaccines against porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 2017, 206, 29-34.	1.9	32
14	Identification of viral genes associated with the interferon-inducing phenotype of a synthetic porcine reproductive and respiratory syndrome virus strain. Virology, 2016, 499, 313-321.	2.4	9
15	Mutations in the 5' NTR and the Non-Structural Protein 3A of the Coxsackievirus B3 Selectively Attenuate Myocarditogenicity. PLoS ONE, 2015, 10, e0131052.	2.5	9
16	HOST CELL FUNCTIONS IN VESICULAR STOMATITIS VIRUS REPLICATION. , 2015, , 107-139.		0
17	Trim21 regulates Nmi-IFI35 complex-mediated inhibition of innate antiviral response. Virology, 2015, 485, 383-392.	2.4	35
18	A Synthetic Porcine Reproductive and Respiratory Syndrome Virus Strain Confers Unprecedented Levels of Heterologous Protection. Journal of Virology, 2015, 89, 12070-12083.	3.4	36

#	Article	IF	Citations
19	OVERVIEW OF RHABDO- AND FILOVIRUSES. , 2015, , 1-13.		O
20	Interferon-Inducible Protein IFI35 Negatively Regulates RIG-I Antiviral Signaling and Supports Vesicular Stomatitis Virus Replication. Journal of Virology, 2014, 88, 3103-3113.	3.4	79
21	Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5. Vaccine, 2014, 32, 3617-3622.	3.8	19
22	Manipulation of Cellular Processing Bodies and Their Constituents by Viruses. DNA and Cell Biology, 2013, 32, 286-291.	1.9	4
23	Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nature lmmunology, 2013, 14, 61-71.	14.5	122
24	Characterization of a serologic marker candidate for development of a live-attenuated DIVA vaccine against porcine reproductive and respiratory syndrome virus. Vaccine, 2013, 31, 4330-4337.	3.8	11
25	Heterogeneous Nuclear Ribonucleoprotein K Supports Vesicular Stomatitis Virus Replication by Regulating Cell Survival and Cellular Gene Expression. Journal of Virology, 2013, 87, 10059-10069.	3.4	38
26	Induction of Stress Granule-Like Structures in Vesicular Stomatitis Virus-Infected Cells. Journal of Virology, 2013, 87, 372-383.	3.4	53
27	Posttranslational Modification of Vesicular Stomatitis Virus Glycoprotein, but Not JNK Inhibition, Is the Antiviral Mechanism of SP600125. Journal of Virology, 2012, 86, 4844-4855.	3.4	8
28	Identification of amino acid residues important for anti-IFN activity of porcine reproductive and respiratory syndrome virus non-structural protein 1. Virology, 2012, 433, 431-439.	2.4	28
29	Location of T-cell epitopes in nonstructural proteins 9 and 10 of type-II porcine reproductive and respiratory syndrome virus. Virus Research, 2012, 169, 13-21.	2.2	45
30	Amino acid residues in the non-structural protein 1 of porcine reproductive and respiratory syndrome virus involved in down-regulation of TNF- \hat{l} ± expression in vitro and attenuation in vivo. Virology, 2012, 432, 241-249.	2.4	25
31	A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus. Virology, 2012, 432, 460-469.	2.4	10
32	Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-α-reactive CD4 T cells in A/J mice. Clinical Immunology, 2012, 144, 237-249.	3.2	68
33	Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts. Virology, 2012, 424, 18-32.	2.4	24
34	RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19036-19041.	7.1	83
35	A virulent strain of porcine reproductive and respiratory syndrome virus does not up-regulate interleukin-10 levels in vitro or in vivo. Virus Research, 2011, 155, 415-422.	2.2	27
36	Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response. Virology, 2011, 410, 385-394.	2.4	58

3

#	Article	IF	Citations
37	Transcription of Vesicular Stomatitis Virus RNA Genome. , 2011, , 149-173.		1
38	Antagonistic Effects of Cellular Poly(C) Binding Proteins on Vesicular Stomatitis Virus Gene Expression. Journal of Virology, 2011, 85, 9459-9471.	3.4	34
39	Immune Evasion of Porcine Reproductive and Respiratory Syndrome Virus through Glycan Shielding Involves both Glycoprotein 5 as Well as Glycoprotein 3. Journal of Virology, 2011, 85, 5555-5564.	3.4	107
40	Cellular Poly(C) Binding Proteins 1 and 2 Interact with Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein $1\hat{l}^2$ and Support Viral Replication. Journal of Virology, 2011, 85, 12939-12949.	3.4	54
41	Porcine reproductive and respiratory syndrome virus non-structural protein 1 suppresses tumor necrosis factor-alpha promoter activation by inhibiting NF- \hat{l}^2 B and Sp1. Virology, 2010, 406, 270-279.	2.4	72
42	Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein $1\hat{l}^2$ Modulates Host Innate Immune Response by Antagonizing IRF3 Activation. Journal of Virology, 2010, 84, 1574-1584.	3.4	227
43	Induction of Interferon and Interferon Signaling Pathways by Replication of Defective Interfering Particle RNA in Cells Constitutively Expressing Vesicular Stomatitis Virus Replication Proteins. Journal of Virology, 2010, 84, 4826-4831.	3.4	17
44	The Minor Envelope Glycoproteins GP2a and GP4 of Porcine Reproductive and Respiratory Syndrome Virus Interact with the Receptor CD163. Journal of Virology, 2010, 84, 1731-1740.	3.4	181
45	Single-Amino-Acid Alterations in a Highly Conserved Central Region of Vesicular Stomatitis Virus N Protein Differentially Affect the Viral Nucleocapsid Template Functions. Journal of Virology, 2009, 83, 5525-5534.	3.4	25
46	Biarsenical Labeling of Vesicular Stomatitis Virus Encoding Tetracysteine-Tagged M Protein Allows Dynamic Imaging of M Protein and Virus Uncoating in Infected Cells. Journal of Virology, 2009, 83, 2611-2622.	3.4	51
47	Biarsenical Labeling of Tetracysteine-Tagged Proteins for Tracking Existing and Newly Synthesized Pools of Proteins. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5343-pdb.prot5343.	0.3	2
48	The ESCRTâ€I Subunit TSG101 Controls Endosomeâ€toâ€Cytosol Release of Viral RNA. Traffic, 2008, 9, 2279-2290.	2.7	56
49	A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging. Virology, 2008, 378, 34-47.	2.4	19
50	Identification of virulence determinants of porcine reproductive and respiratory syndrome virus through construction of chimeric clones. Virology, 2008, 380, 371-378.	2.4	79
51	Development of a porcine reproductive and respiratory syndrome virus differentiable (DIVA) strain through deletion of specific immunodominant epitopes. Vaccine, 2008, 26, 3594-3600.	3.8	37
52	Hypersusceptibility to Vesicular Stomatitis Virus Infection in Dicer1-Deficient Mice Is Due to Impaired miR24 and miR93 Expression. Immunity, 2007, 27, 123-134.	14.3	336
53	Infectious clone-derived viruses from virulent and vaccine strains of porcine reproductive and respiratory syndrome virus mimic biological properties of their parental viruses in a pregnant sow model. Vaccine, 2006, 24, 7071-7080.	3.8	27
54	Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus. Virology, 2006, 353, 410-421.	2.4	118

#	Article	IF	Citations
55	Influence of N-Linked Glycosylation of Porcine Reproductive and Respiratory Syndrome Virus GP5 on Virus Infectivity, Antigenicity, and Ability To Induce Neutralizing Antibodies. Journal of Virology, 2006, 80, 3994-4004.	3.4	244
56	Visualization of Intracellular Transport of Vesicular Stomatitis Virus Nucleocapsids in Living Cells. Journal of Virology, 2006, 80, 6368-6377.	3.4	111
57	Insertion and deletion analyses identify regions of non-structural protein 5A of Hepatitis C virus that are dispensable for viral genome replication. Journal of General Virology, 2006, 87, 323-327.	2.9	32
58	Construction of a Full-Length cDNA Infectious Clone of a European-Like Type 1 PRRSV Isolated in the U.S Advances in Experimental Medicine and Biology, 2006, 581, 605-608.	1.6	12
59	Role of the Hypervariable Hinge Region of Phosphoprotein P of Vesicular Stomatitis Virus in Viral RNA Synthesis and Assembly of Infectious Virus Particles. Journal of Virology, 2005, 79, 8101-8112.	3.4	36
60	The Latent Membrane Protein 1 of Epstein-Barr Virus Establishes an Antiviral State via Induction of Interferon-stimulated Genes. Journal of Biological Chemistry, 2004, 279, 46335-46342.	3.4	64
61	Phosphorylation of Vesicular Stomatitis Virus Phosphoprotein P Is Indispensable for Virus Growth. Journal of Virology, 2004, 78, 6420-6430.	3.4	48
62	A highly pathogenic porcine reproductive and respiratory syndrome virus generated from an infectious cDNA clone retains the in vivo virulence and transmissibility properties of the parental virus. Virology, 2004, 325, 308-319.	2.4	105
63	Essential Role for the dsRNA-Dependent Protein Kinase PKR in Innate Immunity to Viral Infection. Immunity, 2000, 13, 129-141.	14.3	456
64	Overlapping Signals for Transcription and Replication at the 3′ Terminus of the Vesicular Stomatitis Virus Genome. Journal of Virology, 1999, 73, 444-452.	3.4	58
65	Optimal Replication Activity of Vesicular Stomatitis Virus RNA Polymerase Requires Phosphorylation of a Residue(s) at Carboxy-Terminal Domain II of Its Accessory Subunit, Phosphoprotein P. Journal of Virology, 1999, 73, 5613-5620.	3.4	45
66	Polyadenylation of Vesicular Stomatitis Virus mRNA Dictates Efficient Transcription Termination at the Intercistronic Gene Junctions. Journal of Virology, 1998, 72, 1805-1813.	3.4	69
67	Replication Signals in the Genome of Vesicular Stomatitis Virus and Its Defective Interfering Particles: Identification of a Sequence Element That Enhances DI RNA Replication. Virology, 1997, 232, 248-259.	2.4	53
68	Basic Amino Acid Residues at the Carboxy-Terminal Eleven Amino Acid Region of the Phosphoprotein (P) Are Required for Transcription but Not for Replication of Vesicular Stomatitis Virus Genome RNA. Virology, 1997, 238, 103-114.	2.4	47
69	The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles. Virology, 1995, 206, 760-764.	2.4	95
70	Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell, 1992, 69, 1011-1020.	28.9	305
71	Complementation of a vesicular stomatitis virus glycoprotein G mutant with wild-type protein expressed from either a bovine papilloma virus or a vaccinia virus vector system. Virology, 1990, 178, 373-383.	2.4	13
72	Identification of the defects in the hemagglutinin gene of two temperature-sensitive mutants of A/WSN/33 influenza virus. Virology, 1986, 154, 279-285.	2.4	22