Jean-Michel Revest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/697963/publications.pdf

Version: 2024-02-01

29 papers

2,578 citations

394421 19 h-index 477307 29 g-index

29 all docs 29 docs citations

times ranked

29

3714 citing authors

#	Article	IF	CITATIONS
1	Differential expression of the neuronal CB1 cannabinoid receptor in the hippocampus of male Ts65Dn Down syndrome mouse model. Molecular and Cellular Neurosciences, 2022, 119, 103705.	2.2	1
2	Differential expression of serotonin2B receptors in GABAergic and serotoninergic neurons of the rat and mouse dorsal raphe nucleus. Molecular and Cellular Neurosciences, 2022, 121, 103750.	2.2	4
3	PAI-1 protein is a key molecular effector in the transition from normal to PTSD-like fear memory. Molecular Psychiatry, 2021, 26, 4968-4981.	7.9	16
4	Alpha technology: A powerful tool to detect mouse brain intracellular signaling events. Journal of Neuroscience Methods, 2020, 332, 108543.	2.5	2
5	Serotonin2B receptor blockade in the rat dorsal raphe nucleus suppresses cocaine-induced hyperlocomotion through an opposite control of mesocortical and mesoaccumbens dopamine pathways. Neuropharmacology, 2020, 180, 108309.	4.1	9
6	Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome. Neurobiology of Disease, 2019, 125, 92-106.	4.4	26
7	Serotonin2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitory control on serotonin neurons. Experimental Neurology, 2019, 311, 57-66.	4.1	19
8	Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior. Molecular Psychiatry, 2019, 24, 312-320.	7.9	31
9	Serotonin _{2C} receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine. Addiction Biology, 2015, 20, 445-457.	2.6	30
10	Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow. Neuropharmacology, 2015, 89, 375-381.	4.1	14
11	Pregnenolone Can Protect the Brain from Cannabis Intoxication. Science, 2014, 343, 94-98.	12.6	247
12	Adultâ€born neurons are necessary for extended contextual discrimination. Hippocampus, 2012, 22, 292-298.	1.9	225
13	Western blot detection of brain phosphoproteins after performing Laser Microdissection and Pressure Catapulting (LMPC). Journal of Neuroscience Methods, 2011, 198, 204-212.	2.5	12
14	Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6644-6649.	7.1	80
15	The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/lb. Molecular Psychiatry, 2010, 15, 1140-1151.	7.9	81
16	Transcriptional Effects of Glucocorticoid Receptors in the Dentate Gyrus Increase Anxiety-Related Behaviors. PLoS ONE, 2009, 4, e7704.	2.5	24
17	Spatial Relational Memory Requires Hippocampal Adult Neurogenesis. PLoS ONE, 2008, 3, e1959.	2.5	505
18	The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neuroscience, 2005, 8, 664-672.	14.8	207

#	Article	IF	CITATIONS
19	A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development (Cambridge), 2003, 130, 5493-5501.	2.5	141
20	Fibroblast Growth Factor Receptor 2-IIIb Acts Upstream of Shh and Fgf4 and Is Required for Limb Bud Maintenance but Not for the Induction of Fgf8, Fgf10, Msx1, or Bmp4. Developmental Biology, 2001, 231, 47-62.	2.0	254
21	Development of the Thymus Requires Signaling Through the Fibroblast Growth Factor Receptor R2-IIIb. Journal of Immunology, 2001, 167, 1954-1961.	0.8	222
22	SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Research, 2001, 29, 3347-3355.	14.5	65
23	Fibroblast Growth Factor 9 Secretion Is Mediated by a Non-cleaved Amino-terminal Signal Sequence. Journal of Biological Chemistry, 2000, 275, 8083-8090.	3.4	63
24	Fibroblast Growth Factor (FGF) Receptor 1-IIIb Is a Naturally Occurring Functional Receptor for FGFs That Is Preferentially Expressed in the Skin and the Brain. Journal of Biological Chemistry, 2000, 275, 16091-16097.	3.4	67
25	The interaction between F3 immunoglobulin domains and protein tyrosine phosphatases \hat{I}^q/\hat{I}^2 triggers bidirectional signalling between neurons and glial cells. European Journal of Neuroscience, 1999, 11, 1134-1147.	2.6	51
26	Bidirectional Signaling Between Neurons and Glial Cells Via the F3 Neuronal Adhesion Molecule. Advances in Experimental Medicine and Biology, 1999, 468, 309-318.	1.6	13
27	Defasciculation of neurites is mediated by tenascin-R and its neuronal receptor F3/11. Journal of Neuroscience Research, 1998, 52, 390-404.	2.9	49
28	A Functional Interaction between the Neuronal Adhesion Molecules TAG-1 and F3 Modulates Neurite Outgrowth and Fasciculation of Cerebellar Granule Cells. Journal of Neuroscience, 1998, 18, 6853-6870.	3.6	63
29	F3 Neuronal Adhesion Molecule Controls Outgrowth and Fasciculation of Cerebellar Granule Cell Neurites: A Cell-Type-Specific Effect Mediated by the Ig-like Domains. Molecular and Cellular Neurosciences, 1996, 8, 53-69.	2.2	57