
Satrajit Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976647/publications.pdf Version: 2024-02-01

SATDALIT SINHA

#	Article	IF	CITATIONS
1	EHF is a novel regulator of cellular redox metabolism and predicts patient prognosis in HNSCC. NAR Cancer, 2022, 4, .	3.1	5
2	ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicits chromatin remodeling. Epigenetics and Chromatin, 2021, 14, 20.	3.9	17
3	Abstract PO-061: Deciphering radiation resistance in head and neck cancer using patient derived organoids. , 2021, , .		0
4	Transcriptomic and Single-Cell Analysis Reveals Regulatory Networks and Cellular Heterogeneity in Mouse Primary Sjögren's Syndrome Salivary Glands. Frontiers in Immunology, 2021, 12, 729040.	4.8	17
5	Reactivation of super-enhancers by KLF4 in human Head and Neck Squamous Cell Carcinoma. Oncogene, 2020, 39, 262-277.	5.9	15
6	Inducible knockout of â^†Np63 alters cell polarity and metabolism during pubertal mammary gland development. FEBS Letters, 2020, 594, 973-985.	2.8	7
7	p63 and Its Target Follistatin Maintain Salivary Gland Stem/Progenitor Cell Function through TGF-β/Activin Signaling. IScience, 2020, 23, 101524.	4.1	22
8	Loss of ELF5–FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-l̂3 signalling. Nature Cell Biology, 2020, 22, 591-602.	10.3	67
9	Transcriptomic and Network Analysis of Minor Salivary Glands of Patients With Primary Sjögren's Syndrome. Frontiers in Immunology, 2020, 11, 606268.	4.8	21
10	Molecular dissection of the oncogenic role of ETS1 in the mesenchymal subtypes of head and neck squamous cell carcinoma. PLoS Genetics, 2019, 15, e1008250.	3.5	24
11	Protein aggregation of the p63 transcription factor underlies severe skin fragility in AEC syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E906-E915.	7.1	26
12	Single Cell and Open Chromatin Analysis Reveals Molecular Origin of Epidermal Cells of the Skin. Developmental Cell, 2018, 47, 21-37.e5.	7.0	56
13	ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. Journal of Clinical Investigation, 2018, 128, 5095-5109.	8.2	102
14	Elf5 is a principal cell lineage specific transcription factor in the kidney that contributes to Aqp 2 and Avpr 2 gene expression. Developmental Biology, 2017, 424, 77-89.	2.0	36
15	Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes. Nucleic Acids Research, 2017, 45, 8208-8224.	14.5	39
16	p63+ ureteric bud tip cells are progenitors of intercalated cells. JCI Insight, 2017, 2, .	5.0	14
17	p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate. PLoS Genetics, 2017, 13, e1006828.	3.5	34
18	RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation. BMC Genomics, 2016, 17, 923.	2.8	35

#	Article	IF	CITATIONS
19	IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host and Microbe, 2016, 20, 606-617.	11.0	148
20	TGFβ3 Regulates Periderm Removal Through ΔNp63 in the Developing Palate. Journal of Cellular Physiology, 2015, 230, 1212-1225.	4.1	40
21	A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues. BMC Genomics, 2015, 16, 584.	2.8	52
22	RNA-seq Studies Reveal New Insights into p63 and the Transcriptomic Landscape of the Mouse Skin. Journal of Investigative Dermatology, 2015, 135, 629-632.	0.7	14
23	Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes. BMC Genomics, 2014, 15, 1042.	2.8	36
24	Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-I®B activation. Journal of Pathology, 2014, 232, 356-368.	4.5	20
25	ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nature Cell Biology, 2014, 16, 1004-1015.	10.3	176
26	Transcriptional Mechanisms Link Epithelial Plasticity to Adhesion and Differentiation of Epidermal Progenitor Cells. Developmental Cell, 2014, 29, 47-58.	7.0	110
27	Family matters: sibling rivalry and bonding between p53 and p63 in cancer. Experimental Dermatology, 2014, 23, 238-239.	2.9	5
28	deltaNp63 Has a Role in Maintaining Epithelial Integrity in Airway Epithelium. PLoS ONE, 2014, 9, e88683.	2.5	51
29	Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the MA1/4llerian duct epithelium. Developmental Biology, 2013, 381, 5-16.	2.0	50
30	Aberrant epidermal differentiation and disrupted ΔNp63/Notch regulatory axis in Ets1 transgenic mice. Biology Open, 2013, 2, 1336-1345.	1.2	10
31	Brg1 Determines Urothelial Cell Fate during Ureter Development. Journal of the American Society of Nephrology: JASN, 2013, 24, 618-626.	6.1	23
32	Δ <i>Np63</i> knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development (Cambridge), 2012, 139, 772-782.	2.5	245
33	Putative function of TAP63α during endochondral bone formation. Gene, 2012, 495, 95-103.	2.2	12
34	Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nature Cell Biology, 2012, 14, 1212-1222.	10.3	251
35	Elf5 Regulates Mammary Gland Stem/Progenitor Cell Fate by Influencing Notch Signaling. Stem Cells, 2012, 30, 1496-1508.	3.2	110
36	Exome Sequence Identifies RIPK4 as the Bartsocas- Papas Syndrome Locus. American Journal of Human Genetics, 2012, 90, 69-75.	6.2	82

#	Article	IF	CITATIONS
37	TNF-α Promotes c-REL/ΔNp63α Interaction and TAp73 Dissociation from Key Genes That Mediate Growth Arrest and Apoptosis in Head and Neck Cancer. Cancer Research, 2011, 71, 6867-6877.	0.9	71
38	ÂNp63 Regulates Stem Cell Dynamics in the Mammalian Olfactory Epithelium. Journal of Neuroscience, 2011, 31, 8748-8759.	3.6	82
39	ΔNp63 Versatilely Regulates a Broad <i>NF-κB</i> Gene Program and Promotes Squamous Epithelial Proliferation, Migration, and Inflammation. Cancer Research, 2011, 71, 3688-3700.	0.9	119
40	Genome-wide search identifies Ccnd2 as a direct transcriptional target of Elf5 in mouse mammary gland. BMC Molecular Biology, 2010, 11, 68.	3.0	16
41	Ets1 blocks terminal differentiation of keratinocytes and induces expression of matrix metalloproteases and innate immune mediators. Journal of Cell Science, 2010, 123, 3566-3575.	2.0	33
42	Abnormal hair follicle development and altered cell fate of follicular keratinocytes in transgenic mice expressing ΔNp63α. Development (Cambridge), 2010, 137, 1431-1439.	2.5	46
43	Phospho-ΔNp63α/NF-Y protein complex transcriptionally regulates DDIT3 expression in squamous cell carcinoma cells upon cisplatin exposure. Cell Cycle, 2010, 9, 328-338.	2.6	28
44	Breaking into the Brachyury world: ΔNp63 joins in. Cell Cycle, 2010, 9, 2491-2501.	2.6	0
45	Hdac1 and Hdac2 Act Redundantly to Control p63 and p53 Functions in Epidermal Progenitor Cells. Developmental Cell, 2010, 19, 807-818.	7.0	218
46	Tetracycline-Regulated Gene Expression in Transgenic Mouse Epidermis. Methods in Molecular Biology, 2010, 585, 287-302.	0.9	1
47	An Active Role of the ΔN Isoform of p63 in Regulating Basal Keratin Genes K5 and K14 and Directing Epidermal Cell Fate. PLoS ONE, 2009, 4, e5623.	2.5	149
48	Ovol2 Suppresses Cell Cycling and Terminal Differentiation of Keratinocytes by Directly Repressing c-Myc and Notch1. Journal of Biological Chemistry, 2009, 284, 29125-29135.	3.4	53
49	Regulation of VDR by ΔNp63α is associated with inhibition of cell invasion. Journal of Cell Science, 2009, 122, 2828-2835.	2.0	39
50	Chromosomal rearrangements during human epidermal keratinocyte differentiation. Journal of Cellular Physiology, 2009, 221, 139-146.	4.1	24
51	Peroxisome Proliferator-Activated Receptor-α Is a Functional Target of p63 in Adult Human Keratinocytes. Journal of Investigative Dermatology, 2009, 129, 2376-2385.	0.7	2
52	TAp63 Prevents Premature Aging by Promoting Adult Stem Cell Maintenance. Cell Stem Cell, 2009, 5, 64-75.	11.1	228
53	Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: Failure of Stat5 activation and functional differentiation in the absence of Elf5. Developmental Biology, 2009, 329, 227-241.	2.0	125
54	Ets1 Induces Dysplastic Changes When Expressed in Terminally-Differentiating Squamous Epidermal Cells. PLoS ONE, 2009, 4, e4179.	2.5	36

#	Article	IF	CITATIONS
55	Generation and analysis of Elf5-LacZ mouse: unique and dynamic expression of Elf5 (ESE-2) in the inner root sheath of cycling hair follicles. Histochemistry and Cell Biology, 2008, 129, 85-94.	1.7	18
56	A chromatin immunoprecipitation screen in mouse keratinocytes reveals Runx1 as a direct transcriptional target of î"Np63. Journal of Cellular Biochemistry, 2008, 104, 1204-1219.	2.6	25
57	Isolation and characterization of an immortalized oral keratinocyte cell line of mouse origin. Archives of Oral Biology, 2008, 53, 1091-1100.	1.8	20
58	Inhibition of Oral Mucosal Cell Wound Healing by Bisphosphonates. Journal of Oral and Maxillofacial Surgery, 2008, 66, 839-847.	1.2	267
59	Development of an inducible gene expression system for primary murine keratinocytes. Journal of Dermatological Science, 2008, 49, 73-84.	1.9	6
60	Transcriptional Control of the Differentiation Program of Interfollicular Epidermal Keratinocytes. Critical Reviews in Eukaryotic Gene Expression, 2008, 18, 57-79.	0.9	24
61	Ovol1 represses its own transcription by competing with transcription activator c-Myb and by recruiting histone deacetylase activity. Nucleic Acids Research, 2007, 35, 1687-1697.	14.5	37
62	Novel in vivo targets of ΔNp63 in keratinocytes identified by a modified chromatin immunoprecipitation approach. BMC Molecular Biology, 2007, 8, 43.	3.0	24
63	Reciprocal regulation of p63 by C/EBP delta in human keratinocytes. BMC Molecular Biology, 2007, 8, 85.	3.0	26
64	A Functional Enhancer of Keratin14 Is a Direct Transcriptional Target of ΔNp63. Journal of Investigative Dermatology, 2007, 127, 1175-1186.	0.7	92
65	Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53. FEBS Letters, 2006, 580, 4544-4550.	2.8	54
66	Determination of the consensus DNA-binding sequence and a transcriptional activation domain for ESE-2. Biochemical Journal, 2006, 398, 497-507.	3.7	26
67	Defining the Regulatory Elements in the Proximal Promoter of ΔNp63 in Keratinocytes: Potential Roles for Sp1/Sp3, NF-Y, and p63. Journal of Investigative Dermatology, 2006, 126, 1469-1479.	0.7	47
68	Differentiation-specific transcriptional regulation of theESE-2 gene by a novel keratinocyte-restricted factor. Journal of Cellular Biochemistry, 2006, 97, 766-781.	2.6	18
69	Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. Journal of Clinical Investigation, 2006, 116, 1243-1253.	8.2	109
70	Regulation of Intermediate Filament Gene Expression. Methods in Cell Biology, 2004, 78, 267-296.	1.1	0
71	Identification of Basonuclin2, a DNA-binding zinc-finger protein expressed in germ tissues and skin keratinocytes. Genomics, 2004, 83, 821-833.	2.9	42
72	Molecular cloning and characterization of AP-2ε, a fifth member of the AP-2 family. Gene, 2003, 321, 93-102.	2.2	62

#	Article	IF	CITATIONS
73	Structure and Transcription of the Human m3 Muscarinic Receptor Gene. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 298-305.	2.9	31
74	Dissection of a Complex Enhancer Element: Maintenance of Keratinocyte Specificity but Loss of Differentiation Specificity. Molecular and Cellular Biology, 2002, 22, 4293-4308.	2.3	40
75	Defining the Regulatory Factors Required for Epidermal Gene Expression. Molecular and Cellular Biology, 2000, 20, 2543-2555.	2.3	77
76	Physiological Control of Smooth Muscle-specific Gene Expression through Regulated Nuclear Translocation of Serum Response Factor. Journal of Biological Chemistry, 2000, 275, 30387-30393.	3.4	104
77	Chromosomal Assignment and Tissue Expression of CBF-C/NFY-C, the Third Subunit of the Mammalian CCAAT-Binding Factor. Genomics, 1996, 37, 260-263.	2.9	11
78	The Transcriptional Activity of the CCAAT-binding Factor CBF Is Mediated by Two Distinct Activation Domains, One in the CBF-B Subunit and the Other in the CBF-C Subunit. Journal of Biological Chemistry, 1996, 271, 14485-14491.	3.4	73
79	p63 Directs Subtype-Specific Gene Expression in HPV+ Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 0, 12, .	2.8	3
80	Multimodal Dimension Reduction and Subtype Classification of Head and Neck Squamous Cell Tumors. Frontiers in Oncology, 0, 12, .	2.8	2