Nim Tottenham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976628/publications.pdf Version: 2024-02-01

		44069	22832
117	14,697	48	112
papers	citations	h-index	g-index
121	121	121	12623
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 2009, 168, 242-249.	3.3	2,767
2	Imaging the developing brain: what have we learned about cognitive development?. Trends in Cognitive Sciences, 2005, 9, 104-110.	7.8	1,224
3	Biological Substrates of Emotional Reactivity and Regulation in Adolescence During an Emotional Go-Nogo Task. Biological Psychiatry, 2008, 63, 927-934.	1.3	781
4	Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 2010, 13, 46-61.	2.4	740
5	Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15638-15643.	7.1	695
6	A shift from diffuse to focal cortical activity with development. Developmental Science, 2006, 9, 1-8.	2.4	598
7	A Developmental Shift from Positive to Negative Connectivity in Human Amygdala–Prefrontal Circuitry. Journal of Neuroscience, 2013, 33, 4584-4593.	3.6	572
8	A Genetic Variant BDNF Polymorphism Alters Extinction Learning in Both Mouse and Human. Science, 2010, 327, 863-866.	12.6	541
9	A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Frontiers in Human Neuroscience, 2009, 3, 68.	2.0	405
10	The Stress Acceleration Hypothesis: effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 2016, 7, 76-81.	3.9	373
11	The development of human amygdala functional connectivity at rest from 4 to 23years: A cross-sectional study. NeuroImage, 2014, 95, 193-207.	4.2	313
12	Contributions of amygdala and striatal activity in emotion regulation. Biological Psychiatry, 2005, 57, 624-632.	1.3	305
13	Maternal Buffering of Human Amygdala-Prefrontal Circuitry During Childhood but Not During Adolescence. Psychological Science, 2014, 25, 2067-2078.	3.3	272
14	Early-life stress has persistent effects on amygdala function and development in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18274-18278.	7.1	240
15	Stress and the adolescent brain. Neuroscience and Biobehavioral Reviews, 2016, 70, 217-227.	6.1	210
16	The Neuro-Environmental Loop of Plasticity: A Cross-Species Analysis of Parental Effects on Emotion Circuitry Development Following Typical and Adverse Caregiving. Neuropsychopharmacology, 2016, 41, 163-176.	5.4	207
17	Behavioral Assessment of Emotion Discrimination, Emotion Regulation, and Cognitive Control in Childhood, Adolescence, and Adulthood. Frontiers in Psychology, 2011, 2, 39.	2.1	206
18	Neurobiology of Sensory Overresponsivity in Youth With Autism Spectrum Disorders. JAMA Psychiatry, 2015, 72, 778.	11.0	183

#	Article	lF	CITATIONS
19	Association of Birth During the COVID-19 Pandemic With Neurodevelopmental Status at 6 Months in Infants With and Without In Utero Exposure to Maternal SARS-CoV-2 Infection. JAMA Pediatrics, 2022, 176, e215563.	6.2	135
20	Parental buffering of fear and stress neurobiology: Reviewing parallels across rodent, monkey, and human models. Social Neuroscience, 2015, 10, 474-478.	1.3	125
21	Effects of early life stress on amygdala and striatal development. Developmental Cognitive Neuroscience, 2016, 19, 233-247.	4.0	124
22	Human amygdala development in the absence of speciesâ€expected caregiving. Developmental Psychobiology, 2012, 54, 598-611.	1.6	123
23	Elevated amygdala response to faces and gaze aversion in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 2014, 9, 106-117.	3.0	121
24	Socioeconomic Status, Amygdala Volume, and Internalizing Symptoms in Children and Adolescents. Journal of Clinical Child and Adolescent Psychology, 2018, 47, 312-323.	3.4	111
25	Hidden talents in harsh environments. Development and Psychopathology, 2022, 34, 95-113.	2.3	111
26	The Importance of Early Experiences for Neuro-Affective Development. Current Topics in Behavioral Neurosciences, 2013, , 109-129.	1.7	108
27	Neurobiological Programming of Early Life Stress: Functional Development of Amygdala-Prefrontal Circuitry and Vulnerability for Stress-Related Psychopathology. Current Topics in Behavioral Neurosciences, 2017, 38, 117-136.	1.7	107
28	Previous Institutionalization Is Followed by Broader Amygdala–Hippocampal–PFC Network Connectivity during Aversive Learning in Human Development. Journal of Neuroscience, 2016, 36, 6420-6430.	3.6	100
29	The international society for developmental psychobiology Sackler symposium: Early adversity and the maturation of emotion circuits—A crossâ€species analysis. Developmental Psychobiology, 2014, 56, 1635-1650.	1.6	92
30	Mechanisms linking childhood adversity with psychopathology: Learning as an intervention target. Behaviour Research and Therapy, 2019, 118, 101-109.	3.1	89
31	Neural and behavioral correlates of expectancy violations in attention-deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2007, 48, 881-889.	5.2	88
32	Teens Impulsively React rather than Retreat from Threat. Developmental Neuroscience, 2014, 36, 220-227.	2.0	87
33	Amygdala response to mother. Developmental Science, 2012, 15, 307-319.	2.4	83
34	The developing amygdala: a student of the world and a teacher of the cortex. Current Opinion in Psychology, 2017, 17, 55-60.	4.9	83
35	A negativity bias for ambiguous facial-expression valence during childhood: Converging evidence from behavior and facial corrugator muscle responses Emotion, 2013, 13, 92-103.	1.8	77
36	The Importance of Early Experiences for Neuro-Affective Development. Current Topics in Behavioral Neurosciences, 2013, 16, 109-129.	1.7	73

#	Article	IF	CITATIONS
37	Altered ventral striatal–medial prefrontal cortex resting-state connectivity mediates adolescent social problems after early institutional care. Development and Psychopathology, 2017, 29, 1865-1876.	2.3	72
38	Normative development of ventral striatal resting state connectivity in humans. NeuroImage, 2015, 118, 422-437.	4.2	70
39	Social scaffolding of human amygdala-mPFCcircuit development. Social Neuroscience, 2015, 10, 489-499.	1.3	70
40	Early Adversity and the Neotenous Human Brain. Biological Psychiatry, 2020, 87, 350-358.	1.3	70
41	Indiscriminate Amygdala Response to Mothers and Strangers After Early Maternal Deprivation. Biological Psychiatry, 2013, 74, 853-860.	1.3	67
42	The racially diverse affective expression (RADIATE) face stimulus set. Psychiatry Research, 2018, 270, 1059-1067.	3.3	66
43	Early Childhood Parenting Predicts Late Childhood Brain Functional Connectivity During Emotion Perception and Reward Processing. Child Development, 2020, 91, 110-128.	3.0	62
44	Early development of subcortical regions involved in non-cued attention switching. Developmental Science, 2004, 7, 534-542.	2.4	60
45	Visual Exploration Strategies and the Development of Infants' Facial Emotion Discrimination. Frontiers in Psychology, 2010, 1, 180.	2.1	60
46	Amygdala Sensitivity to Race Is Not Present in Childhood but Emerges over Adolescence. Journal of Cognitive Neuroscience, 2013, 25, 234-244.	2.3	58
47	Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study. Journal of Neuroscience, 2016, 36, 4771-4784.	3.6	57
48	Using a Developmental Ecology Framework to Align Fear Neurobiology Across Species. Annual Review of Clinical Psychology, 2019, 15, 345-369.	12.3	57
49	Risk and Developmental Heterogeneity in Previously Institutionalized Children. Journal of Adolescent Health, 2012, 51, S29-S33.	2.5	51
50	Exploration—exploitation strategy is dependent on early experience. Developmental Psychobiology, 2015, 57, 313-321.	1.6	49
51	Parental presence switches avoidance to attraction learning in children. Nature Human Behaviour, 2019, 3, 1070-1077.	12.0	49
52	Longitudinal changes in amygdala, hippocampus and cortisol development following early caregiving adversity. Developmental Cognitive Neuroscience, 2021, 48, 100916.	4.0	49
53	Impaired Social Decision-Making Mediates the Association Between ADHD and Social Problems. Journal of Abnormal Child Psychology, 2016, 44, 1023-1032.	3.5	48
54	Decreased Amygdala Reactivity to Parent Cues Protects Against Anxiety Following Early Adversity: An Examination Across 3 Years. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 664-671.	1.5	48

#	Article	IF	CITATIONS
55	Mind and gut: Associations between mood and gastrointestinal distress in children exposed to adversity. Development and Psychopathology, 2020, 32, 309-328.	2.3	48
56	Positive valence bias and parent–child relationship security moderate the association between early institutional caregiving and internalizing symptoms. Development and Psychopathology, 2017, 29, 519-533.	2.3	47
57	Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology, 2013, 25, 879-889.	2.3	46
58	Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure. Social Neuroscience, 2017, 12, 22-31.	1.3	43
59	NIH/Kennedy Center Workshop on Music and the Brain: Finding Harmony. Neuron, 2018, 97, 1214-1218.	8.1	43
60	Atypical frontoamygdala functional connectivity in youth with autism. Developmental Cognitive Neuroscience, 2019, 37, 100603.	4.0	42
61	Early-life adversity and adolescent depression: mechanisms involving the ventral striatum. CNS Spectrums, 2015, 20, 337-345.	1.2	41
62	Early Parenting Intervention Effects on Brain Responses to Maternal Cues Among High-Risk Children. American Journal of Psychiatry, 2020, 177, 818-826.	7.2	38
63	Transitional and translational studies of risk for anxiety. Depression and Anxiety, 2011, 28, 18-28.	4.1	35
64	The Revised Child Anxiety and Depression Scale - Parent Version: Extended Applicability and Validity for Use with Younger Youth and Children with Histories of Early-Life Caregiver Neglect. Journal of Psychopathology and Behavioral Assessment, 2015, 37, 705-718.	1.2	34
65	Increased activation of the fear neurocircuitry in children exposed to violence. Depression and Anxiety, 2020, 37, 303-312.	4.1	32
66	Early Experience Shapes Amygdala Sensitivity to Race: An International Adoption Design. Journal of Neuroscience, 2013, 33, 13484-13488.	3.6	30
67	Measuring early life adversity: A dimensional approach. Development and Psychopathology, 2022, 34, 499-511.	2.3	29
68	Not all risk taking behavior is bad: Associative sensitivity predicts learning during risk taking among high sensation seekers. Personality and Individual Differences, 2013, 54, 709-715.	2.9	28
69	Adverse caregiving in infancy blunts neural processing of the mother. Nature Communications, 2020, 11, 1119.	12.8	28
70	Diurnal cortisol after early institutional care—Age matters. Developmental Cognitive Neuroscience, 2017, 25, 160-166.	4.0	27
71	Distinctive heritability patterns of subcortical-prefrontal cortex resting state connectivity in childhood: A twin study. NeuroImage, 2018, 175, 138-149.	4.2	27
72	Adaptation in the face of adversity: Decrements and enhancements in children's cognitive control behavior following early caregiving instability. Developmental Science, 2021, 24, e13133.	2.4	27

#	Article	IF	CITATIONS
73	Vigilance, the Amygdala, and Anxiety in Youths With a History of Institutional Care. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 493-501.	1.5	26
74	Sleep disturbance and the long-term impact of early adversity. Neuroscience and Biobehavioral Reviews, 2021, 126, 304-313.	6.1	26
75	Picking Up the Pieces: Caregivers of Adolescents Bereaved by Parental AIDS. Clinical Child Psychology and Psychiatry, 2002, 7, 115-124.	1.6	24
76	Risky decision-making in children with and without ADHD: A prospective study. Child Neuropsychology, 2018, 24, 261-276.	1.3	24
77	Regulatory skill as a resilience factor for adults with a history of foster care: A pilot study. Developmental Psychobiology, 2015, 57, 1-16.	1.6	21
78	Callous-unemotional traits and reduced default mode network connectivity within a community sample of children. Development and Psychopathology, 2021, 33, 1170-1183.	2.3	20
79	Risky decision making from childhood through adulthood: Contributions of learning and sensitivity to negative feedback Emotion, 2016, 16, 101-109.	1.8	20
80	"The Cooties Effect― Amygdala Reactivity to Opposite- versus Same-sex Faces Declines from Childhood to Adolescence. Journal of Cognitive Neuroscience, 2015, 27, 1685-1696.	2.3	19
81	Ageâ€related change in taskâ€evoked amygdala—prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4–22 years. Human Brain Mapping, 2022, 43, 3221-3244.	3.6	18
82	Behavioral Practices Regarding Combination Therapies for HIV/AIDS. Journal of Sex Education and Therapy, 1999, 24, 81-88.	0.3	17
83	Community Violence Exposure is Associated with Hippocampus–Insula Resting State Functional Connectivity in Urban Youth. Neuroscience, 2021, 468, 149-157.	2.3	17
84	Neural meaning making, prediction, and prefrontal–subcortical development following early adverse caregiving. Development and Psychopathology, 2020, 32, 1563-1578.	2.3	17
85	Discrimination of amygdala response predicts future separation anxiety in youth with early deprivation. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 1135-1144.	5.2	16
86	Is it time to switch your T1W sequence? Assessing the impact of prospective motion correction on the reliability and quality of structural imaging. NeuroImage, 2021, 226, 117585.	4.2	16
87	Pandemic beyond the virus: maternal COVID-related postnatal stress is associated with infant temperament. Pediatric Research, 2023, 93, 253-259.	2.3	16
88	Reliability and validity of bifactor models of dimensional psychopathology in youth , 2022, 131, 407-421.		15
89	Developmental changes in story-evoked responses in the neocortex and hippocampus. ELife, 0, 11, .	6.0	15
90	The face behind the mask: a developmental study. Developmental Science, 2006, 9, 288-294.	2.4	14

#	Article	IF	CITATIONS
91	Age-Related Increases in Posterior Hippocampal Granularity Are Associated with Remote Detailed Episodic Memory in Development. Journal of Neuroscience, 2021, 41, 1738-1754.	3.6	14
92	Exposure to the self-face facilitates identification of dynamic facial expressions: Influences on individual differences Emotion, 2013, 13, 196-202.	1.8	13
93	An exploration of amygdalaâ€prefrontal mechanisms in the intergenerational transmission of learned fear. Developmental Science, 2021, 24, e13056.	2.4	13
94	Amygdala responses to threat in violence-exposed children depend on trauma context and maternal caregiving. Development and Psychopathology, 2023, 35, 1159-1170.	2.3	12
95	Human hippocampal activation in the delayed matching-and nonmatching-to-sample memory tasks: An event-related functional MRI approach Behavioral Neuroscience, 2002, 116, 716-721.	1.2	12
96	Parent's anxiety links household stress and young children's behavioral dysregulation. Developmental Psychobiology, 2021, 63, 16-30.	1.6	11
97	Distinct and similar patterns of emotional development in adolescents and young adults. Developmental Psychobiology, 2020, 62, 591-599.	1.6	10
98	Exploring valence bias as a metric for frontoamygdalar connectivity and depressive symptoms in childhood. Developmental Psychobiology, 2021, 63, 1013-1028.	1.6	10
99	The Fundamental Role of Early Environments to Developing an Emotionally Healthy Brain. Policy Insights From the Behavioral and Brain Sciences, 2018, 5, 98-103.	2.4	9
100	Friendship and social functioning following early institutional rearing: The role of ADHD symptoms. Development and Psychopathology, 2019, 31, 1477-1487.	2.3	9
101	Dynamic Alterations in Neural Networks Supporting Aversive Learning in Children Exposed to Trauma: Neural Mechanisms Underlying Psychopathology. Biological Psychiatry, 2022, 91, 667-675.	1.3	9
102	Experimental evidence for a childâ€ŧoâ€adolescent switch in human amygdalaâ€prefrontal cortex communication: A crossâ€sectional pilot study. Developmental Science, 2022, 25, .	2.4	9
103	Different forms of childhood maltreatment have different impacts on the neural systems involved in the representation of reinforcement value. Developmental Cognitive Neuroscience, 2022, 53, 101051.	4.0	8
104	Heterogeneity in caregiving-related early adversity: Creating stable dimensions and subtypes. Development and Psychopathology, 2022, 34, 621-634.	2.3	8
105	Seeing yourself helps you see others Emotion, 2011, 11, 1235-1241.	1.8	7
106	Depression Risk Is Associated With Weakened Synchrony Between the Amygdala and Experienced Emotion. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 343-351.	1.5	5
107	Using gastrointestinal distress reports to predict youth anxiety risk: Implications for mental health literacy and community care. Developmental Psychobiology, 2021, 63, e22126.	1.6	5
108	Shifting children's attentional focus to emotions during art museum experiences. British Journal of Developmental Psychology, 2022, 40, 73-91.	1.7	3

#	Article	IF	CITATIONS
109	Childâ€parent cardiac transference is decreased following disrupted/absent early care. Developmental Psychobiology, 2021, 63, 1279-1294.	1.6	2
110	Associations between cortical thickness and anxious/depressive symptoms differ by the quality of early care. Development and Psychopathology, 2023, 35, 73-84.	2.3	2
111	The Brain's Emotional Development. Cerebrum: the Dana Forum on Brain Science, 2017, 2017, .	0.1	2
112	Working memory moderates the association between early institutional care and separation anxiety symptoms in late childhood and adolescence. Development and Psychopathology, 2019, 31, 989-997.	2.3	1
113	Effects of sensory distraction and salience priming on emotion identification in autism: an fMRI study. Journal of Neurodevelopmental Disorders, 2021, 13, 42.	3.1	1
114	Fear modulates parental orienting during childhood and adolescence. Journal of Experimental Child Psychology, 2022, 221, 105461.	1.4	1
115	Attachment Figure Priming Alters Affective Learning and Autonomic Reactivity in Adults. Biological Psychiatry, 2020, 87, S367.	1.3	0
116	Community Violence is Associated With Altered Hippocampus Resting-State Functional Connectivity in a Sample of Urban Youth. Biological Psychiatry, 2021, 89, S167-S168.	1.3	0
117	Being the third wheel: Toddlers use bystander learning to acquire cue-specific valence knowledge. Journal of Experimental Child Psychology, 2022, 219, 105391.	1.4	0