
Olivier J F Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976579/publications.pdf Version: 2024-02-01

Οιινιέρ Ι Ε Μάρτιν

#	Article	IF	CITATIONS
1	Modeling of second-order nonlinear metasurfaces. New Journal of Physics, 2022, 24, 025006.	2.9	4
2	Precise Capillaryâ€Assisted Nanoparticle Assembly in Reusable Templates. Particle and Particle Systems Characterization, 2022, 39, .	2.3	1
3	Review—Origin and Promotional Effects of Plasmonics in Photocatalysis. Journal of the Electrochemical Society, 2022, 169, 036512.	2.9	4
4	A Lowâ€Temperature Annealing Method for Alloy Nanostructures and Metasurfaces: Unlocking a Novel Degree of Freedom. Advanced Materials, 2022, 34, e2108225.	21.0	14
5	Remarkable Color Gamut Enhancement of Dye Lacquers Using Corrugated Surfaces. Advanced Photonics Research, 2022, 3, 2100245.	3.6	1
6	Surfactants Control Optical Trapping near a Glass Wall. Journal of Physical Chemistry C, 2022, 126, 378-386.	3.1	4
7	Robustness Analysis of Metasurfaces: Perfect Structures Are Not Always the Best. ACS Photonics, 2022, 9, 2438-2447.	6.6	2
8	Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au–Al nanoantennas. Journal of Chemical Physics, 2021, 154, 074701.	3.0	6
9	Role of electric currents in the Fano resonances of connected plasmonic structures. Optics Express, 2021, 29, 11635.	3.4	5
10	Narrowband Optical Coupler Using Fano Interference in First Order Diffraction. ACS Photonics, 2021, 8, 2017-2026.	6.6	2
11	Multipolar scattering analysis of hybrid metal-dielectric nanostructures. Optics Express, 2021, 29, 24056.	3.4	7
12	Multipolar scattering analysis of a hybrid metal-dielectric stacked nanoantenna. , 2021, , .		0
13	Second harmonic generation in glass-based metasurfaces using tailored surface lattice resonances. Nanophotonics, 2021, 10, 3465-3475.	6.0	8
14	Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-off and ion beam etching. Nanotechnology, 2021, 32, 475202.	2.6	14
15	Fundamental Properties and Classification of Polarization Converting Bianisotropic Metasurfaces. IEEE Transactions on Antennas and Propagation, 2021, 69, 5653-5663.	5.1	24
16	Successive training of a generative adversarial network for the design of an optical cloak. OSA Continuum, 2021, 4, 87.	1.8	18
17	Extension of Lorentz reciprocity and Poynting theorems for spatially dispersive media with quadrupolar responses. Physical Review B, 2021, 104, .	3.2	15
18	Engineering multi-state transparency on demand. Light Advanced Manufacturing, 2021, 2, 1.	5.1	4

#	Article	IF	CITATIONS
19	Angular Scattering Properties of Metasurfaces. IEEE Transactions on Antennas and Propagation, 2020, 68, 432-442.	5.1	31
20	Hybrid Metal-Dielectric Metasurfaces for Refractive Index Sensing. Nano Letters, 2020, 20, 8752-8759.	9.1	39
21	Multipolar origin of electromagnetic transverse force resulting from two-wave interference. Physical Review B, 2020, 102, .	3.2	12
22	Sampling Optical Modes and Electronic States with Fast, Monochromated EELS. Microscopy and Microanalysis, 2020, 26, 1754-1755.	0.4	0
23	Reliable Langmuir Blodgett colloidal masks for large area nanostructure realization. Thin Solid Films, 2020, 709, 138195.	1.8	11
24	Multipole interplay controls optical forces and ultra-directional scattering. Optics Express, 2020, 28, 27547.	3.4	16
25	Teaching optics to a machine learning network. Optics Letters, 2020, 45, 2922.	3.3	28
26	Electronic Structure-Dependent Surface Plasmon Resonance in Single Au–Fe Nanoalloys. Nano Letters, 2019, 19, 5754-5761.	9.1	37
27	Photocatalytic ammonia production enhanced by a plasmonic near-field and hot electrons originating from aluminium nanostructures. Faraday Discussions, 2019, 214, 399-415.	3.2	12
28	Quantifying Fano properties in self-assembled metamaterials. Physical Review B, 2019, 99, .	3.2	4
29	Towards Efficient Nonlinear Plasmonic Metasurfaces. , 2019, , .		Ο
30	Strong second-harmonic generation from Au–Al heterodimers. Nanoscale, 2019, 11, 23475-23481.	5.6	13
31	Studying the different coupling regimes for a plasmonic particle in a plasmonic trap. Optics Express, 2019, 27, 38670.	3.4	10
32	Modes interplay and dynamics in the second harmonic generation of plasmonic nanostructures. Optics Express, 2019, 27, 38708.	3.4	9
33	Origin of enhancement in Raman scattering from Ag-dressed carbon-nanotube antennas: experiment and modelling. Physical Chemistry Chemical Physics, 2018, 20, 5827-5840.	2.8	6
34	Less Is More: Enhancement of Second-Harmonic Generation from Metasurfaces by Reduced Nanoparticle Density. Nano Letters, 2018, 18, 7709-7714.	9.1	77
35	Hybrid Metallodielectric Metasurfaces for Sensing. , 2018, , .		0
36	Label-Free Electrochemical Immunoassay for C-Reactive Protein. Biosensors, 2018, 8, 34.	4.7	49

#	Article	IF	CITATIONS
37	Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion. Beilstein Journal of Nanotechnology, 2018, 9, 2674-2683.	2.8	4
38	Dynamics of Second-Harmonic Generation in a Plasmonic Silver Nanorod. ACS Photonics, 2018, 5, 3246-3254.	6.6	15
39	Recent Advances in Resonant Waveguide Gratings. Laser and Photonics Reviews, 2018, 12, 1800017.	8.7	250
40	Homogenization and Scattering Analysis of Second-Harmonic Generation in Nonlinear Metasurfaces. IEEE Transactions on Antennas and Propagation, 2018, 66, 6061-6075.	5.1	9
41	Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene. Sensors, 2018, 18, 800.	3.8	60
42	Second Harmonic Scattering from Silver Nanocubes. Journal of Physical Chemistry C, 2018, 122, 17447-17455.	3.1	12
43	Universal trapping in a three-beam optical lattice. Physical Review A, 2018, 98, .	2.5	4
44	Light refocusing with up-scalable resonant waveguide gratings in confocal prolate spheroid arrangements. Journal of Nanophotonics, 2018, 12, 1.	1.0	2
45	Mechanisms of perfect absorption in nano-composite systems. Optics Express, 2018, 26, 27089.	3.4	7
46	Second harmonic generation dynamics in plasmonic nanoparticles. , 2018, , .		0
47	Highly sensitive SERS analysis of the cyclic Arg–Gly–Asp peptide ligands of cells using nanogap antennas. Journal of Biophotonics, 2017, 10, 294-302.	2.3	11
48	Phase Bifurcation and Zero Reflection in Planar Plasmonic Metasurfaces. ACS Photonics, 2017, 4, 852-860.	6.6	10
49	Tailoring the field enhancement in Fano-resonant nanoantennas for improved optical bistability. Journal of Nanophotonics, 2017, 11, 016007.	1.0	3
50	Enhancement Mechanisms of the Second Harmonic Generation from Double Resonant Aluminum Nanostructures. ACS Photonics, 2017, 4, 1522-1530.	6.6	50
51	Color-Selective and Versatile Light Steering with up-Scalable Subwavelength Planar Optics. ACS Photonics, 2017, 4, 1060-1066.	6.6	13
52	Mode Evolution in Strongly Coupled Plasmonic Dolmens Fabricated by Templated Assembly. ACS Photonics, 2017, 4, 1661-1668.	6.6	11
53	Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films. Small, 2017, 13, 1700044.	10.0	50
54	Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy. ACS Nano, 2017, 11, 3485-3495.	14.6	42

#	Article	IF	CITATIONS
55	Twisting Fluorescence through Extrinsic Chiral Antennas. Nano Letters, 2017, 17, 2265-2272.	9.1	34
56	Full Color Generation Using Silver Tandem Nanodisks. ACS Nano, 2017, 11, 4419-4427.	14.6	173
57	Where Does Energy Go in Electron Energy Loss Spectroscopy of Nanostructures?. ACS Photonics, 2017, 4, 156-164.	6.6	21
58	Van der Waals MoS2/VO2 heterostructure junction with tunable rectifier behavior and efficient photoresponse. Scientific Reports, 2017, 7, 14250.	3.3	37
59	Revealing a Mode Interplay That Controls Second-Harmonic Radiation in Gold Nanoantennas. ACS Photonics, 2017, 4, 2923-2929.	6.6	16
60	Wavevector-Selective Nonlinear Plasmonic Metasurfaces. Nano Letters, 2017, 17, 5258-5263.	9.1	20
61	Fano-resonance-assisted metasurface for color routing. Light: Science and Applications, 2017, 6, e17017-e17017.	16.6	82
62	Second harmonic generation in plasmonic nanostructures: A double dipolar resonant antenna design. , 2017, , .		0
63	Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas. ACS Nano, 2017, 11, 11240-11249.	14.6	33
64	Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. Journal of Nanobiotechnology, 2017, 15, 19.	9.1	13
65	Nanoscale topographical control of capillary assembly of nanoparticles. Nature Nanotechnology, 2017, 12, 73-80.	31.5	266
66	Optical second harmonic generation from nanostructured graphene: a full wave approach. Optics Express, 2017, 25, 27015.	3.4	18
67	Steering and filtering white light with resonant waveguide gratings. , 2017, , .		1
68	Surface-to-volume ratio controls the radiation of stratified plasmonic antennas. Journal of Nanophotonics, 2017, 11, 1.	1.0	0
69	Direct Comparison of Second Harmonic Generation and Two-Photon Photoluminescence from Single Connected Gold Nanodimers. Journal of Physical Chemistry C, 2016, 120, 17699-17710.	3.1	30
70	Highly Improved Fabrication of Ag and Al Nanostructures for UV and Nonlinear Plasmonics. Advanced Optical Materials, 2016, 4, 871-876.	7.3	38
71	Pro-oxidant effects of nano-TiO ₂ on Chlamydomonas reinhardtii during short-term exposure. RSC Advances, 2016, 6, 115271-115283.	3.6	8
72	Mode analysis of second-harmonic generation in plasmonic nanostructures. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 768.	2.1	50

#	Article	IF	CITATIONS
73	Maximizing Nonlinear Optical Conversion in Plasmonic Nanoparticles through Ideal Absorption of Light. ACS Photonics, 2016, 3, 1453-1460.	6.6	9
74	Maximal absorption regime in random media. Optics Express, 2016, 24, A1306.	3.4	3
75	Revisiting Newton's rings with a plasmonic optical flat for high-accuracy surface inspection. Light: Science and Applications, 2016, 5, e16156-e16156.	16.6	8
76	New numerical methods for the design of efficient nonlinear plasmonic sources of light and nanosensors. Proceedings of SPIE, 2016, , .	0.8	0
77	Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective. , 2016, , .		1
78	Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response. Optics Express, 2016, 24, 17138.	3.4	14
79	Geometrical Effects on Sintering Dynamics of Cu–Ag Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 17791-17800.	3.1	51
80	Orientation Dependence of Plasmonically Enhanced Spontaneous Emission. Journal of Physical Chemistry C, 2016, 120, 21037-21046.	3.1	7
81	Evaluation of the nonlinear response of plasmonic metasurfaces: Miller's rule, nonlinear effective susceptibility method, and full-wave computation. Journal of the Optical Society of America B: Optical Physics, 2016, 33, A8.	2.1	34
82	New insights into ROS dynamics: a multi-layered microfluidic chip for ecotoxicological studies on aquatic microorganisms. Nanotoxicology, 2016, 10, 1041-1050.	3.0	14
83	Numerical methods for nanophotonics: standard problems and future challenges. Laser and Photonics Reviews, 2015, 9, 577-603.	8.7	129
84	Metallized Gratings Enable Color Effects and Floating Screen Films by Firstâ€Order Diffraction. Advanced Optical Materials, 2015, 3, 1793-1799.	7.3	22
85	Insight into the eigenmodes of plasmonic nanoclusters based on the Green's tensor method. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 194.	2.1	8
86	Fluorescence enhancement using Fano-resonant a plasmonic nanostructure with selective functionalization of molecules at the electromagnetic hot spot (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
87	Multiscattering-Enhanced Absorption Spectroscopy. Analytical Chemistry, 2015, 87, 1536-1543.	6.5	15
88	Portable oxidative stress sensor: Dynamic and non-invasive measurements of extracellular H 2 O 2 released by algae. Biosensors and Bioelectronics, 2015, 68, 245-252.	10.1	15
89	Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit. ACS Nano, 2015, 9, 7621-7633.	14.6	57
90	Surface-Enhanced Hyper-Raman Scattering: A New Road to the Observation of Low Energy Molecular Vibrations. Journal of Physical Chemistry C, 2015, 119, 15547-15556.	3.1	19

#	Article	IF	CITATIONS
91	Manipulating the Optical Bistability in a Nonlinear Plasmonic Nanoantenna Array with a Reflecting Surface. Plasmonics, 2015, 10, 203-209.	3.4	15
92	Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes. Biomedical Optics Express, 2015, 6, 2353.	2.9	7
93	Accuracy of surface integral equation matrix elements in plasmonic calculations. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 485.	2.1	33
94	Internal optical forces in plasmonic nanostructures. Optics Express, 2015, 23, 20143.	3.4	18
95	A miniaturized electrochemical assay for homocysteine using screen-printed electrodes with cytochrome c anchored gold nanoparticles. Analyst, The, 2015, 140, 6071-6078.	3.5	24
96	Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications. ACS Nano, 2015, 9, 10545-10562.	14.6	455
97	Fano-resonant aluminum and gold nanostructures created with a tunable, up-scalable process. Nanoscale, 2015, 7, 18179-18187.	5.6	15
98	A Universal Law for Plasmon Resonance Shift in Biosensing. ACS Photonics, 2015, 2, 144-150.	6.6	59
99	Optical forces in nanoplasmonic systems: how do they work, what can they be useful for?. Faraday Discussions, 2015, 178, 421-434.	3.2	20
100	Up-scalable method to amplify the diffraction efficiency of simple gratings. Optics Letters, 2014, 39, 6557.	3.3	9
101	Spectral tunability of realistic plasmonic nanoantennas. Applied Physics Letters, 2014, 105, .	3.3	7
102	Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures. Optics Express, 2014, 22, 29693.	3.4	51
103	Large-scale sub-100Ânm compound plasmonic grating arrays to control the interaction between localized and propagating plasmons. Journal of Nanophotonics, 2014, 8, 083897.	1.0	8
104	Optical forces and torques on realistic plasmonic nanostructures: a surface integral approach. Optics Letters, 2014, 39, 4699.	3.3	31
105	Absorbance enhancement in microplate wells for improved-sensitivity biosensors. Biosensors and Bioelectronics, 2014, 56, 198-203.	10.1	15
106	Nonlinear Plasmonic Nanorulers. ACS Nano, 2014, 8, 4931-4939.	14.6	63
107	Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach. Nanoscale, 2014, 6, 15262-15270.	5.6	28
108	Periodicity-Induced Symmetry Breaking in a Fano Lattice: Hybridization and Tight-Binding Regimes. ACS Nano, 2014, 8, 11860-11868.	14.6	34

#	Article	IF	CITATIONS
109	Quantitative Extraction of Equivalent Lumped Circuit Elements for Complex Plasmonic Nanostructures. ACS Photonics, 2014, 1, 403-407.	6.6	25
110	Metal Double Layers with Sub-10 nm Channels. ACS Nano, 2014, 8, 3700-3706.	14.6	25
111	Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: Eigenmode analysis and symmetry properties. Physical Review B, 2014, 89, .	3.2	42
112	Refractive Index Sensing with Subradiant Modes: A Framework To Reduce Losses in Plasmonic Nanostructures. ACS Nano, 2013, 7, 6978-6987.	14.6	94
113	Coupling Strength Can Control the Polarization Twist of a Plasmonic Antenna. Nano Letters, 2013, 13, 4575-4579.	9.1	25
114	Largeâ€Area Gold/Parylene Plasmonic Nanostructures Fabricated by Direct Nanocutting. Advanced Optical Materials, 2013, 1, 50-54.	7.3	14
115	Plasmonic Radiance: Probing Structure at the Ångström Scale with Visible Light. Nano Letters, 2013, 13, 497-503.	9.1	108
116	Universal scaling of plasmon coupling in metal nanostructures: Checking the validity for higher plasmonic modes using second harmonic generation. Physical Review B, 2013, 87, .	3.2	8
117	Ultrasensitive Optical Shape Characterization of Gold Nanoantennas Using Second Harmonic Generation. Nano Letters, 2013, 13, 1787-1792.	9.1	88
118	Broadband wide-angle dispersion measurements: Instrumental setup, alignment, and pitfalls. Review of Scientific Instruments, 2013, 84, 033107.	1.3	5
119	Augmenting Second Harmonic Generation Using Fano Resonances in Plasmonic Systems. Nano Letters, 2013, 13, 1847-1851.	9.1	200
120	Engineering Metal Adhesion Layers That Do Not Deteriorate Plasmon Resonances. ACS Nano, 2013, 7, 2751-2757.	14.6	79
121	Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquaticcells. Biosensors and Bioelectronics, 2013, 42, 385-390.	10.1	44
122	Mechanisms of Fano Resonances in Coupled Plasmonic Systems. ACS Nano, 2013, 7, 4527-4536.	14.6	304
123	Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators. Nano Letters, 2013, 13, 5449-5453.	9.1	75
124	Reusable plasmonic substrates fabricated by interference lithography: a platform for systematic sensing studies. Journal of Raman Spectroscopy, 2013, 44, 170-175.	2.5	25
125	Second Harmonic Generation from Realistic Plasmonic Nanoantennas and Fano Metamolecules. , 2013, , \cdot		0
126	Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures. Optics Express, 2013, 21, 21500.	3.4	36

#	Article	IF	CITATIONS
127	Detecting the trapping of small metal nanoparticles in the gap of nanoantennas with optical second harmonic generation. Optics Express, 2013, 21, 28710.	3.4	6
128	Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film. Optics Letters, 2013, 38, 4758.	3.3	28
129	Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2970.	2.1	46
130	Influencing the ultrafast plasmon damping time using Fano resonances for nonlinear plasmonics. EPJ Web of Conferences, 2013, 41, 09012.	0.3	0
131	A portable microfluidic-based biophotonic sensor for extracellular H2O2measurements. , 2013, , .		3
132	Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media. Scientific Reports, 2013, 3, 3447.	3.3	24
133	Coherent perfect absorption mediated anomalous reflection and refraction. Optics Letters, 2012, 37, 4452.	3.3	46
134	Compound resonance-induced coupling effects in composite plasmonic metamaterials. Optics Express, 2012, 20, 29447.	3.4	12
135	Multipolar effects and strong coupling in hybrid plasmonic metamaterials. Proceedings of SPIE, 2012, , ·	0.8	1
136	Enhanced second-harmonic generation from double resonant plasmonic antennae. Optics Express, 2012, 20, 12860.	3.4	225
137	Ultrasensitive system for the real-time detection of H 2 O 2 based on strong coupling in a bioplasmonic system. , 2012, , .		4
138	Using Fano resonances to influence the ultrafast plasmon damping time for nonlinear plasmonics. , 2012, , .		0
139	Biophotonic tool for sensing the dynamics of H ₂ O ₂ extracellular release in stressed cells. , 2012, , .		4
140	Fano resonant plasmonic systems: Functioning principles and applications. AIP Conference Proceedings, 2012, , .	0.4	13
141	Nonlinear plasmonics of metallic heptamers. , 2012, , .		2
142	Direct Anchoring of Cytochrome c onto Bare Gold Electrode for Sensing Oxidative Stress in Aquatic Cells. Procedia Engineering, 2012, 47, 1284-1286.	1.2	2
143	Biophotonic Sensor for Real-time and Non-invasive Detection of Extracellular H2O2 Released by Stimulated Cells. Procedia Engineering, 2012, 47, 1281-1283.	1.2	1
144	Subwavelength Metal Apertures for Label-Free Detection of Single-Molecules. Biophysical Journal, 2012, 102, 727a.	0.5	0

#	Article	IF	CITATIONS
145	A Zeptoliter Volume Meter for Analysis of Single Protein Molecules. Nano Letters, 2012, 12, 370-375.	9.1	27
146	Molecule-Dependent Plasmonic Enhancement of Fluorescence and Raman Scattering near Realistic Nanostructures. ACS Nano, 2012, 6, 9828-9836.	14.6	47
147	Novel biosensor for detecting hemoglobin and its oxidation state based on nonreciprocity in a coupled waveguide system. , 2012, , .		Ο
148	Hybrid nanoparticle and thin film SPR biosensor with a high figure of merit. Proceedings of SPIE, 2012, , .	0.8	1
149	Fabrication of free-standing plasmonic nanoantennas with application for optical break junctions. , 2012, , .		0
150	Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Physical Review A, 2012, 85, .	2.5	68
151	Surface-Plasmon-Induced Modification on the Spontaneous Emission Spectrum via Subwavelength-Confined Anisotropic Purcell Factor. Nano Letters, 2012, 12, 2488-2493.	9.1	78
152	Ab initio engineering of Fano resonances. , 2011, , .		2
153	Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes. Nano Letters, 2011, 11, 365-371.	9.1	84
154	Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures. Nano Letters, 2011, 11, 482-487.	9.1	117
155	<i>Ab initio</i> theory of Fano resonances in plasmonic nanostructures and metamaterials. Physical Review B, 2011, 83, .	3.2	271
156	Controlling and utilizing optical forces at the nanoscale with plasmonic antennas. Proceedings of SPIE, 2011, , .	0.8	5
157	Influence of Electromagnetic Interactions on the Line Shape of Plasmonic Fano Resonances. ACS Nano, 2011, 5, 8999-9008.	14.6	280
158	Plasmon delocalization onset in finite sized nanostructures. Optics Express, 2011, 19, 11387.	3.4	22
159	Simulation of complex plasmonic circuits including bends. Optics Express, 2011, 19, 18979.	3.4	11
160	Relation between near–field and far–field properties of plasmonic Fano resonances. Optics Express, 2011, 19, 22167.	3.4	100
161	Strongly coupled bio-plasmonic system: Application to oxygen sensing. Journal of Applied Physics, 2011, 110, 044701.	2.5	5
162	Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit. Applied Physics Letters, 2011, 99, 151104.	3.3	20

#	Article	IF	CITATIONS
163	Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors. Applied Physics Letters, 2011, 99, 263302.	3.3	77
164	Analytical Description of Fano Resonances in Plasmonic Nanostructures. , 2011, , .		2
165	Optical Forces in Plasmonic Nanostructures: New Functionalities for Nanophotonic Circuits. , 2011, , .		О
166	Controlling plasmonic resonances in binary metallic nanostructures. Journal of Applied Physics, 2010, 107, .	2.5	4
167	Guided Bloch Surface Waves on Ultrathin Polymeric Ridges. Nano Letters, 2010, 10, 2087-2091.	9.1	151
168	Solving surface plasmon resonances and near field in metallic nanostructures: Green's matrix method and its applications. Science Bulletin, 2010, 55, 2608-2617.	1.7	5
169	Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 278-284.	2.0	32
170	Pitfalls in the Determination of Optical Cross Sections From Surface Integral Equation Simulations. IEEE Transactions on Antennas and Propagation, 2010, 58, 2158-2161.	5.1	23
171	Distance-controlled scattering in a plasmonic trap. Applied Physics Letters, 2010, 96, 073104.	3.3	5
172	Ultrathin waveguides for Bloch surface waves: Near-field analysis of propagation and polarization. , 2010, , .		1
173	Light scattering by an array of electric and magnetic nanoparticles. Optics Express, 2010, 18, 10001.	3.4	47
174	Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 2261.	1.5	115
175	Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1617.	2.1	61
176	A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters, 2010, 96, .	3.3	168
177	Optical trapping and sensing with plasmonic dipole antennas. , 2010, , .		4
178	Resonance fluorescence of single molecules assisted by a plasmonic structure. Physical Review B, 2010, 81, .	3.2	58
179	Symmetry and selection rules for localized surface plasmon resonances in nanostructures. Physical Review B, 2010, 81, .	3.2	41
180	Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas. Nano Letters, 2010, 10, 1006-1011.	9.1	426

#	Article	IF	CITATIONS
181	Multiscale and Accurate Modeling of High Permittivity and Plasmonic Nanostructures. , 2010, , .		0
182	Electromagnetic Scattering of Finite and Infinite 3D Lattices in Polarizable Backgrounds. , 2009, , .		1
183	Polarization sensitive silicon photodiodes using nanostructured metallic grids. Applied Physics Letters, 2009, 94, .	3.3	54
184	Modeling near-field properties of plasmonic nanoparticles: a surface integral approach. , 2009, , .		9
185	Introduction to the Issue on Nanophotonics and Optical MEMS. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1307-1309.	2.9	0
186	Local field enhancement of an infinite conical metal tip illuminated by a focused beam. Journal of Raman Spectroscopy, 2009, 40, 1338-1342.	2.5	80
187	Retardation-induced plasmonic blinking in coupled nanoparticles. Optics Letters, 2009, 34, 368.	3.3	14
188	Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film. Optics Letters, 2009, 34, 1405.	3.3	39
189	Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 732.	1.5	226
190	Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness. Optics Express, 2009, 17, 2364.	3.4	31
191	Integration of plasmonic trapping in a microfluidic environment. Optics Express, 2009, 17, 6018.	3.4	134
192	Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas. Journal of Physical Chemistry C, 2009, 113, 14672-14675.	3.1	83
193	A New Closed-Form Solution to Light Scattering by Spherical Nanoshells. IEEE Nanotechnology Magazine, 2009, 8, 617-626.	2.0	19
194	Focused Ion Beam: A Versatile Technique for the Fabrication of Nano-Devices. Praktische Metallographie/Practical Metallography, 2009, 46, 154-156.	0.3	2
195	Real-time Java simulations of multiple interference dielectric filters. Computer Physics Communications, 2008, 179, 903-907.	7.5	4
196	Reversal of the optical force in a plasmonic trap. Optics Letters, 2008, 33, 3001.	3.3	33
197	Surface polaritons of small coated cylinders illuminated by normal incident TM and TE plane waves. Optics Express, 2008, 16, 1007.	3.4	31
198	Engineering the optical response of plasmonic nanoantennas. Optics Express, 2008, 16, 9144.	3.4	407

#	Article	IF	CITATIONS
199	Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Optics Express, 2008, 16, 13287.	3.4	63
200	Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength. Nano Letters, 2008, 8, 2171-2175.	9.1	228
201	Tunable plasmonic nanostructures. , 2008, , .		0
202	Integration of plasmonic optical traps in microfluidics. Proceedings of SPIE, 2008, , .	0.8	0
203	Symmetry breaking in a plasmonic metamaterial. , 2008, , .		0
204	Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends. Physical Review A, 2008, 77, .	2.5	34
205	Narrow-Band Multiresonant Plasmon Nanostructure for the Coherent Control of Light: An Optical Analog of the Xylophone. Physical Review Letters, 2008, 100, 117402.	7.8	30
206	Molecular quenching and relaxation in a plasmonic tunable system. Physical Review B, 2008, 77, .	3.2	44
207	Enhanced backscattering by multiple nanocylinders illuminated by TE plane wave. Journal of Applied Physics, 2008, 104, .	2.5	8
208	Analysis of optical forces in plasmonic traps. , 2008, , .		0
209	Theory of molecular excitation and relaxation near a plasmonic device. Journal of Chemical Physics, 2007, 127, 034701.	3.0	32
210	Simulations of hybrid long-range plasmon modes with application to 90° bends. Optics Letters, 2007, 32, 2354.	3.3	47
211	Resonant tunneling of surface plasmon-polaritons. Optics Express, 2007, 15, 6380.	3.4	42
212	Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes. Optics Express, 2007, 15, 9631.	3.4	35
213	Controlling the Fano interference in a plasmonic lattice. Physical Review B, 2007, 76, .	3.2	175
214	Transient behavior of surface plasmon polaritons scattered at a subwavelength groove. Physical Review B, 2007, 76, .	3.2	47
215	Tunable composite nanoparticle for plasmonics. Optics Letters, 2006, 31, 2750.	3.3	141
216	Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture. Optics Express, 2006, 14, 956.	3.4	42

#	Article	IF	CITATIONS
217	Optical interactions in a plasmonic particle coupled to a metallic film. Optics Express, 2006, 14, 9971.	3.4	220
218	Prospects of Resonant Optical Antennas for Nano-Analysis. Chimia, 2006, 60, 765-769.	0.6	25
219	Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal. Physica Status Solidi (B): Basic Research, 2006, 243, 2344-2348.	1.5	31
220	Characterization of metamaterial slabs in terms of scattering parameters under oblique plane wave incidence. , 2006, , .		0
221	Optimization of finite diffraction gratings for the excitation of surface plasmons. Journal of Applied Physics, 2006, 100, 124301.	2.5	55
222	Generalized bloch equations for optical interactions in confined geometries. Chemical Physics Letters, 2005, 404, 44-48.	2.6	41
223	Resonant Optical Antennas. Science, 2005, 308, 1607-1609.	12.6	1,988
224	Resolving the wave vector in negative refractive index media. Optics Letters, 2005, 30, 2626.	3.3	39
225	Lifetime of an emitting dipole near various types of interfaces including magnetic and negative refractive materials. Journal of Chemical Physics, 2004, 121, 11358.	3.0	26
226	Efficient Scattering Calculations in Complex Backgrounds. AEU - International Journal of Electronics and Communications, 2004, 58, 93-99.	2.9	10
227	Numerical modeling of light emission and propagation in organic LEDs using the Green's tensor. , 2004, , .		12
228	Surface plasmon illumination scheme for contact lithography beyond the diffraction limit. Microelectronic Engineering, 2003, 67-68, 24-30.	2.4	20
229	A Green's tensor approach to the modeling of nanostructure replication and characterization. Radio Science, 2003, 38, n/a-n/a.	1.6	4
230	Fluorescence resonant energy transfer in the optical near field. Physical Review A, 2003, 67, .	2.5	18
231	Plasmon Resonances in Nanowires with a Non—regular Cross-Section. , 2003, , 183-210.		27
232	Microwire arrays with plasmonic response at microwave frequencies. Applied Physics Letters, 2002, 81, 2896-2898.	3.3	35
233	Efficient isotropic magnetic resonators. Applied Physics Letters, 2002, 81, 939-941.	3.3	95
234	Electromagnetic resonances in individual and coupled split-ring resonators. Journal of Applied Physics, 2002, 92, 2929-2936.	2.5	384

#	Article	IF	CITATIONS
235	Influence of metal roughness on the near-field generated by an aperture/apertureless probe. Journal of Microscopy, 2002, 205, 147-152.	1.8	36
236	A library for computing the filtered and non-filtered 3D Green's tensor associated with infinite homogeneous space and surfaces. Computer Physics Communications, 2002, 144, 111-120.	7.5	19
237	Retardation-induced plasmon resonances in coupled nanoparticles. Optics Letters, 2001, 26, 1096.	3.3	177
238	Electromagnetic scattering of high-permittivity particles on a substrate. Applied Optics, 2001, 40, 4562.	2.1	17
239	How to tap an innocent waveguide. Optics Express, 2001, 8, 644.	3.4	8
240	Plasmon resonant coupling in metallic nanowires. Optics Express, 2001, 8, 655.	3.4	313
241	Scattering experiments with a diving cylinder. Optics Express, 2001, 9, 303.	3.4	5
242	Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001, 64,	3.2	448
243	Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires. Applied Physics B: Lasers and Optics, 2001, 73, 299-304.	2.2	42
244	Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy. Journal of Microscopy, 2001, 202, 60-65.	1.8	92
245	Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chemical Physics Letters, 2001, 341, 1-6.	2.6	198
246	Title is missing!. Optical and Quantum Electronics, 2001, 33, 315-325.	3.3	9
247	Contrast mechanisms in high-resolution contact lithography: A comparative study. Microelectronic Engineering, 2001, 57-58, 109-116.	2.4	15
248	Green's tensor technique for scattering in two-dimensional stratified media. Physical Review E, 2001, 63, 066615.	2.1	53
249	Validity domain and limitation of non-retarded Green's tensor for electromagnetic scattering at surfaces. Optics Communications, 2000, 184, 37-47.	2.1	33
250	Spectral response of plasmon resonant nanoparticles with a non-regular shape. Optics Express, 2000, 6, 213.	3.4	212
251	Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. Journal of Chemical Physics, 2000, 112, 7761-7774.	3.0	684
252	Field polarization and polarization charge distributions in plasmon resonant nanoparticles. New Journal of Physics, 2000, 2, 27-27.	2.9	83

#	Article	IF	CITATIONS
253	Accurate and efficient computation of the Green's tensor for stratified media. Physical Review E, 2000, 62, 5797-5807.	2.1	243
254	Near-field distribution in light-coupling masks for contact lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 3314.	1.6	5
255	Generalized Field Propagator for Arbitrary Finite-Size Photonic Band Gap Structures. Physical Review Letters, 1999, 82, 315-318.	7.8	49
256	Extension of the generalized multipole technique to anisotropic medias. Optics Communications, 1998, 150, 9-14.	2.1	9
257	Light-coupling masks: An alternative, lensless approach to high-resolution optical contact lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 3422.	1.6	31
258	Extension of the generalized multipole technique to three-dimensional anisotropic scatterers. Optics Letters, 1998, 23, 579.	3.3	14
259	Energy flow in light-coupling masks for lensless optical lithography. Optics Express, 1998, 3, 280.	3.4	18
260	Electromagnetic scattering in polarizable backgrounds. Physical Review E, 1998, 58, 3909-3915.	2.1	232
261	Light-coupling masks for lensless, sub-wavelength optical lithography. Applied Physics Letters, 1998, 72, 2379-2381.	3.3	103
262	Optical magnetic near-field intensities around nanometer-scale surface structures. Physical Review B, 1997, 55, 16487-16497.	3.2	45
263	Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Applied Physics Letters, 1997, 70, 705-707.	3.3	247
264	Dielectric versus topographic contrast in near-field microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 1801.	1.5	67
265	Martin, Girard, and Dereux Reply:. Physical Review Letters, 1996, 76, 2405-2405.	7.8	1
266	Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods. Physical Review E, 1996, 54, 4285-4292.	2.1	41
267	Electrodynamics in complex systems: Application to near-field probing of optical microresonators. Physical Review E, 1996, 54, 5752-5760.	2.1	15
268	Electromagnetic fields in two-dimensional models of near-field optical microscope tips. Ultramicroscopy, 1995, 60, 1-9.	1.9	16
269	Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement. Physical Review B, 1995, 52, 2889-2898.	3.2	68
270	Molecular Lifetime Changes Induced by Nanometer Scale Optical Fields. Physical Review Letters, 1995, 75, 3098-3101.	7.8	122

#	Article	IF	CITATIONS
271	Generalized Field Propagator for Electromagnetic Scattering and Light Confinement. Physical Review Letters, 1995, 74, 526-529.	7.8	353
272	Theory of Near Field Optics. , 1995, , 1-20.		4
273	Physical interaction between tip and molecules in scanning force microscopy imaging of adsorbed C60 and fullerene tubules. Journal of Chemical Physics, 1994, 101, 10973-10979.	3.0	5
274	Theoretical analysis of light-inductive forces in scanning probe microscopy. Physical Review B, 1994, 49, 13872-13881.	3.2	40
275	Importance of confined fields in near-field optical imaging of subwavelength objects. Physical Review B, 1994, 50, 14467-14473.	3.2	56
276	Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1994, 11, 1073.	1.5	121
277	Field susceptibility of a composite system: application to van der Waals dispersive interactions inside a finite line of physisorbed atoms. Surface Science, 1993, 295, 445-456.	1.9	14
278	Thermal behavior of visible AlGaInP-GaInP ridge laser diodes. IEEE Journal of Quantum Electronics, 1992, 28, 2582-2588.	1.9	48
279	Polarization sensitivity of optical resonant dipole antennas. Journal of the European Optical Society-Rapid Publications, 0, 3, .	1.9	12