Arno F Alpi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6975789/publications.pdf

Version: 2024-02-01

304743 395702 2,325 33 22 33 citations h-index g-index papers 35 35 35 2983 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis. Blood, 2021, 137, 155-167.	1.4	22
2	GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Molecular Cell, 2021, 81, 2445-2459.e13.	9.7	44
3	The ubiquitin ligation machinery in the defense against bacterial pathogens. EMBO Reports, 2021, 22, e52864.	4.5	28
4	CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Nature Chemical Biology, 2021, 17, 1075-1083.	8.0	30
5	Interconversion between Anticipatory and Active GID E3ÂUbiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. Molecular Cell, 2020, 77, 150-163.e9.	9.7	50
6	Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Molecular Systems Biology, 2020, 16, e9813.	7.2	21
7	ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Cell Host and Microbe, 2019, 26, 86-99.e7.	11.0	42
8	Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling. Journal of Biological Chemistry, 2019, 294, 2651-5314.	3.4	13
9	ZOMES: the intriguing interplay of PCI complexes and the ubiquitin in protein homeostasis. Cell Death and Disease, 2017, 8, e3021-e3021.	6.3	3
10	Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase. Nature Chemical Biology, 2017, 13, 850-857.	8.0	80
11	Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochemical Journal, 2016, 473, 3401-3419.	3.7	51
12	Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell, 2016, 166, 1198-1214.e24.	28.9	172
13	Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Scientific Reports, 2016, 6, 26178.	3.3	11
14	The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL. Journal of Biological Chemistry, 2015, 290, 20995-21006.	3.4	23
15	AluY-mediated germline deletion, duplication and somatic stem cell reversion in <i>UBE2T</i> defines a new subtype of Fanconi anemia. Human Molecular Genetics, 2015, 24, 5093-5108.	2.9	62
16	E3 Ubiquitin Ligase HOIP Attenuates Apoptotic Cell Death Induced by Cisplatin. Cancer Research, 2014, 74, 2246-2257.	0.9	61
17	Structure of HHARI, a RING-IBR-RING Ubiquitin Ligase: Autoinhibition of an Ariadne-Family E3 and Insights into Ligation Mechanism. Structure, 2013, 21, 1030-1041.	3.3	116
18	TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO Journal, 2013, 32, 2848-2860.	7.8	84

#	Article	IF	CITATIONS
19	C. elegans Ring Finger Protein RNF-113 Is Involved in Interstrand DNA Crosslink Repair and Interacts with a RAD51C Homolog. PLoS ONE, 2013, 8, e60071.	2.5	13
20	RNF8 and RNF168 but not HERC2 are required for DNA damage-induced ubiquitylation in chicken DT40 cells. DNA Repair, 2012, 11, 892-905.	2.8	22
21	The Fanconi Anaemia Components UBE2T and FANCM Are Functionally Linked to Nucleotide Excision Repair. PLoS ONE, 2012, 7, e36970.	2.5	38
22	The Caenorhabditis elegans Homolog of Gen1/Yen1 Resolvases Links DNA Damage Signaling to DNA Double-Strand Break Repair. PLoS Genetics, 2010, 6, e1001025.	3.5	86
23	The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair. Nucleic Acids Research, 2009, 37, 4360-4370.	14.5	71
24	Functional Dissection of Caenorhabditis elegans CLK-2/TEL2 Cell Cycle Defects during Embryogenesis and Germline Development. PLoS Genetics, 2009, 5, e1000451.	3.5	43
25	Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair, 2009, 8, 430-435.	2.8	62
26	Mechanistic Insight into Site-Restricted Monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Molecular Cell, 2008, 32, 767-777.	9.7	170
27	UBE2T, the Fanconi Anemia Core Complex, and FANCD2 Are Recruited Independently to Chromatin: a Basis for the Regulation of FANCD2 Monoubiquitination. Molecular and Cellular Biology, 2007, 27, 8421-8430.	2.3	79
28	The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nature Structural and Molecular Biology, 2005, 12, 763-771.	8.2	182
29	Multiple Genetic Pathways Involving the Caenorhabditis elegans Bloom's Syndrome Genes him-6, rad-51, and top-3 Are Needed To Maintain Genome Stability in the Germ Line. Molecular and Cellular Biology, 2004, 24, 5016-5027.	2.3	74
30	Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma, 2003, 112, 6-16.	2.2	222
31	Cell Cycle: Check for Asynchrony. Current Biology, 2003, 13, R560-R562.	3.9	5
32	C. elegans RAD-5/CLK-2 defines a new DNA damage checkpoint protein. Current Biology, 2001, 11, 1934-1944.	3.9	154
33	A Novel 14-Kilodalton Protein Interacts with the Mitogen-Activated Protein Kinase Scaffold Mp1 on a Late Endosomal/Lysosomal Compartment. Journal of Cell Biology, 2001, 152, 765-776.	5. 2	189