
Liza Barki-Harrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6975750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute social isolation and regrouping cause short- and long-term molecular changes in the rat medial amygdala. Molecular Psychiatry, 2022, 27, 886-895.	7.9	21
2	Willingness and concerns of transfusion-dependent hematological patients toward the option of home transfusion therapy. Palliative Medicine, 2021, 35, 927-932.	3.1	8
3	Limited Proteolysis of Cyclooxygenase-2 Enhances Cell Proliferation. International Journal of Molecular Sciences, 2020, 21, 3195.	4.1	3
4	Conserved statin-mediated activation of the p38-MAPK pathway protects Caenorhabditis elegans from the cholesterol-independent effects of statins. Molecular Metabolism, 2020, 39, 101003.	6.5	2
5	Substrate-inactivated cyclooxygenase-2 is disposed of by exosomes through the ER–Golgi pathway. Biochemical Journal, 2018, 475, 3141-3151.	3.7	10
6	The Heparanase Inhibitor PG545 Attenuates Colon Cancer Initiation and Growth, Associating with Increased p21 Expression. Neoplasia, 2017, 19, 175-184.	5.3	25
7	Upregulation of Prostaglandin Receptor EP1 Expression Involves Its Association with Cyclooxygenase-2. PLoS ONE, 2014, 9, e91018.	2.5	11
8	Down-regulation of Cyclooxygenase-2 by the Carboxyl Tail of the Angiotensin II Type 1 Receptor. Journal of Biological Chemistry, 2014, 289, 31473-31479.	3.4	6
9	Brain region-specific methylation in the promoter of the murine oxytocin receptor gene is involved in its expression regulation. Psychoneuroendocrinology, 2014, 39, 121-131.	2.7	52
10	\hat{I}^2 1-Adrenergic receptor downregulates the expression of cyclooxygenase-2. Biochemical and Biophysical Research Communications, 2014, 451, 319-321.	2.1	6
11	Underwater trauma causes a long-term specific increase in the expression of cyclooxygenase-2 in the ventral CA1 of the hippocampus. Psychoneuroendocrinology, 2014, 49, 62-68.	2.7	10
12	Prostaglandin receptor EP1-mediated differential degradation of cyclooxygenases involves a specific lysine residue. Biochemical and Biophysical Research Communications, 2014, 443, 738-742.	2.1	1
13	Selective increase in the association of the β2 adrenergic receptor, β Arrestin-1 and p53 with Mdm2 in the ventral hippocampus one month after underwater trauma. Behavioural Brain Research, 2013, 240, 26-28.	2.2	19
14	DNA Methylation of Specific CpG Sites in the Promoter Region Regulates the Transcription of the Mouse Oxytocin Receptor. PLoS ONE, 2013, 8, e56869.	2.5	85
15	Prostaglandin EP1 Receptor Down-regulates Expression of Cyclooxygenase-2 by Facilitating Its Proteasomal Degradation. Journal of Biological Chemistry, 2012, 287, 17214-17223.	3.4	19
16	Inhibition of exocytosis or endocytosis blocks activityâ€dependent redistribution of synapsin. Journal of Neurochemistry, 2012, 120, 248-258.	3.9	15
17	Tyrosine Phosphorylation of the 2B Subunit of the NMDA Receptor Is Necessary for Taste Memory Formation. Journal of Neuroscience, 2009, 29, 9219-9226.	3.6	45
18	ERK-dependent PSD-95 induction in the gustatory cortex is necessary for taste learning, but not retrieval. Nature Neuroscience, 2008, 11, 1149-1151.	14.8	66

#	Article	IF	CITATIONS
19	β-Arrestins: Multifunctional Cellular Mediators. Physiology, 2008, 23, 17-22.	3.1	43
20	β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. Journal of Clinical Investigation, 2007, 117, 2445-2458.	8.2	405
21	Ectodomain Shedding-Dependent Transactivation of Epidermal Growth Factor Receptors in Response to Insulin-Like Growth Factor Type I. Molecular Endocrinology, 2004, 18, 2727-2739.	3.7	41
22	Oligomerisation of angiotensin receptors: novel aspects in disease and drug therapy. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2004, 5, 49-52.	1.7	6
23	Network integration of the adrenergic system in cardiac hypertrophy. Cardiovascular Research, 2004, 63, 391-402.	3.8	81
24	Sensing heart stress. Nature Medicine, 2003, 9, 19-20.	30.7	16
25	Dual Inhibition of β-Adrenergic and Angiotensin II Receptors by a Single Antagonist. Circulation, 2003, 108, 1611-1618.	1.6	236
26	Protein Kinase A and G Protein-coupled Receptor Kinase Phosphorylation Mediates β-1 Adrenergic Receptor Endocytosis through Different Pathways. Journal of Biological Chemistry, 2003, 278, 35403-35411.	3.4	140
27	Elevated dopamine receptor-coupled Gs protein measures in mononuclear leukocytes of patients with schizophrenia. Schizophrenia Research, 2001, 47, 37-47.	2.0	23
28	Differential G protein measures in mononuclear leukocytes of patients with bipolar mood disorder are state dependent. Journal of Affective Disorders, 1997, 43, 85-93.	4.1	66
29	Reduced Gs protein function and Gαs levels in leukocytes of patients with Parkinson's disease. Movement Disorders, 1997, 12, 167-174.	3.9	5
30	Reduced β-adrenergic receptor-coupled Gs protein function and Gsα immunoreactivity in mononuclear leukocytes of patients with depression. Biological Psychiatry, 1996, 39, 755-760.	1.3	36
31	Functional and quantitative measures of receptor-coupled G proteins in human mononuclear leukocytes: No change with age. Experimental Gerontology, 1996, 31, 351-363.	2.8	8