Graham L Collingridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6975694/publications.pdf Version: 2024-02-01

		2311	1627
331	49,213	98	215
papers	citations	h-index	g-index
352 all docs	352 docs citations	352 times ranked	25747 citing authors

#	Article	IF	CITATIONS
1	A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361, 31-39.	13.7	10,699
2	Excitatory amino acids in synaptic transmission in the Schaffer collateral ommissural pathway of the rat hippocampus Journal of Physiology, 1983, 334, 33-46.	1.3	2,074
3	NMDA receptors - their role in long-term potentiation. Trends in Neurosciences, 1987, 10, 288-293.	4.2	1,139
4	Receptor trafficking and synaptic plasticity. Nature Reviews Neuroscience, 2004, 5, 952-962.	4.9	886
5	Excitatory amino acid receptors and synaptic plasticity. Trends in Pharmacological Sciences, 1990, 11, 290-296.	4.0	835
6	Long-term depression in the CNS. Nature Reviews Neuroscience, 2010, 11, 459-473.	4.9	785
7	Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 1994, 372, 237-243.	13.7	755
8	Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature, 1993, 363, 347-350.	13.7	716
9	Pairedâ€pulse depression of monosynaptic GABAâ€mediated inhibitory postsynaptic responses in rat hippocampus Journal of Physiology, 1990, 424, 513-531.	1.3	637
10	LTP Inhibits LTD in the Hippocampus via Regulation of GSK3Î ² . Neuron, 2007, 53, 703-717.	3.8	632
11	Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression. Journal of Neuroscience, 2004, 24, 7821-7828.	1.7	606
12	GABAB autoreceptors regulate the induction of LTP. Nature, 1991, 349, 609-611.	13.7	569
13	Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology, 2011, 60, 1017-1041.	2.0	559
14	NSF Binding to GluR2 Regulates Synaptic Transmission. Neuron, 1998, 21, 87-97.	3.8	539
15	A nomenclature for ligand-gated ion channels. Neuropharmacology, 2009, 56, 2-5.	2.0	531
16	Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nature Reviews Neuroscience, 2016, 17, 485-496.	4.9	509
17	A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature, 1994, 368, 740-743.	13.7	477
18	Modulation of AMPA receptor unitary conductance by synaptic activity. Nature, 1998, 393, 793-797.	13.7	470

#	Article	IF	CITATIONS
19	Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nature Neuroscience, 2006, 9, 602-604.	7.1	464
20	Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature, 1989, 338, 500-503.	13.7	452
21	Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature, 1986, 322, 265-268.	13.7	404
22	A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature, 1997, 389, 599-603.	13.7	401
23	The role of NMDA receptors in learning and memory. Nature, 1987, 330, 604-605.	13.7	389
24	The synaptic activation of kainate receptors. Nature, 1997, 388, 179-182.	13.7	382
25	The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. Journal of Neuroscience Methods, 2001, 108, 71-83.	1.3	381
26	Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature, 1996, 379, 78-81.	13.7	373
27	Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature, 1991, 349, 156-158.	13.7	357
28	Alleviating Neuropathic Pain Hypersensitivity by Inhibiting PKMζ in the Anterior Cingulate Cortex. Science, 2010, 330, 1400-1404.	6.0	350
29	The antagonism of amino acidâ€induced excitations of rat hippocampal CA1 neurones in vitro Journal of Physiology, 1983, 334, 19-31.	1.3	340
30	Evidence for the participation of nigrotectal Î ³ -aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat. Neuroscience, 1982, 7, 207-222.	1.1	316
31	Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism. Neuron, 1999, 23, 365-376.	3.8	311
32	(RS)-2-Chloro-5-Hydroxyphenylglycine (CHPG) Activates mGlu5, but not mGlu1, Receptors Expressed in CHO Cells and Potentiates NMDA Responses in the Hippocampus. Neuropharmacology, 1997, 36, 265-267.	2.0	310
33	The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology, 1997, 36, 1517-1532.	2.0	301
34	Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction. Neuron, 1999, 24, 389-399.	3.8	298
35	Kainate receptors are involved in synaptic plasticity. Nature, 1999, 402, 297-301.	13.7	297
36	PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses. Neuron, 2000, 28, 873-886.	3.8	297

#	Article	IF	CITATIONS
37	Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends in Pharmacological Sciences, 1994, 15, 333-342.	4.0	288
38	Aβ1–42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nature Neuroscience, 2011, 14, 545-547.	7.1	273
39	Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Neuropharmacology, 1993, 32, 1-9.	2.0	266
40	Novel pharmacological targets for the treatment of Parkinson's disease. Nature Reviews Drug Discovery, 2006, 5, 845-854.	21.5	262
41	Coexistence of Two Forms of LTP in ACC Provides a Synaptic Mechanism for the Interactions between Anxiety and Chronic Pain. Neuron, 2015, 85, 377-389.	3.8	261
42	Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology, 2007, 52, 60-70.	2.0	246
43	Kainate receptors: Pharmacology, function and therapeutic potential. Neuropharmacology, 2009, 56, 90-113.	2.0	242
44	Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Molecular Brain, 2013, 6, 5.	1.3	239
45	Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology, 1999, 38, 349-359.	2.0	233
46	Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130144.	1.8	228
47	Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs. Journal of Neuroscience, 2004, 24, 5172-5176.	1.7	219
48	Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. Journal of Neuroscience Methods, 2007, 162, 346-356.	1.3	214
49	Magnesium ions block an N-methyl-d-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neuroscience Letters, 1985, 53, 21-26.	1.0	213
50	The role of JAK-STAT signaling within the CNS. Jak-stat, 2013, 2, e22925.	2.2	207
51	A selective N-methyl-d-aspartate antagonist depresses epileptiform activity in rat hippocampal slices. Neuroscience Letters, 1985, 61, 255-260.	1.0	206
52	The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 2013, 64, 13-26.	2.0	206
53	Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors Journal of Physiology, 1993, 469, 693-716.	1.3	205
54	Developmental Changes in Synaptic AMPA and NMDA Receptor Distribution and AMPA Receptor Subunit Composition in Living Hippocampal Neurons. Journal of Neuroscience, 2000, 20, 7922-7931.	1.7	205

#	Article	IF	CITATIONS
55	Long-term potentiation and the role of N -methyl- d -aspartate receptors. Brain Research, 2015, 1621, 5-16.	1.1	199
56	Rapid and Differential Regulation of AMPA and Kainate Receptors at Hippocampal Mossy Fibre Synapses by PICK1 and GRIP. Neuron, 2003, 37, 625-638.	3.8	196
57	Activation of microglial Nâ€methylâ€Dâ€aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Annals of Neurology, 2012, 72, 536-549.	2.8	194
58	Age-Related Impairment of Synaptic Transmission But Normal Long-Term Potentiation in Transgenic Mice that Overexpress the Human APP695SWE Mutant Form of Amyloid Precursor Protein. Journal of Neuroscience, 2001, 21, 4691-4698.	1.7	193
59	A Critical Role of a Facilitatory Presynaptic Kainate Receptor in Mossy Fiber LTP. Neuron, 2001, 32, 697-709.	3.8	187
60	An investigation of depotentiation of longterm potentiation in the CA1 region of the hippocampus. Experimental Brain Research, 1994, 100, 437-443.	0.7	186
61	The JAK/STAT Pathway Is Involved in Synaptic Plasticity. Neuron, 2012, 73, 374-390.	3.8	185
62	Increased Seizure Susceptibility in Mice Lacking Metabotropic Glutamate Receptor 7. Journal of Neuroscience, 2001, 21, 8734-8745.	1.7	183
63	MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neuroscience Letters, 1987, 80, 111-114.	1.0	178
64	Roles of metabotropic glutamate receptors in LTP and LTD in. Current Opinion in Neurobiology, 1999, 9, 299-304.	2.0	178
65	Activation of group I mG1uRs potentiates NMDA responses in rat hippocampal slices. Neuroscience Letters, 1996, 203, 211-213.	1.0	177
66	CNQX blocks acidic amino acid induced depolarizations and synaptic components mediated by non-NMDA receptors in rat hippocampal slices. Neuroscience Letters, 1988, 89, 182-186.	1.0	169
67	The Tyrosine Phosphatase STEP Mediates AMPA Receptor Endocytosis after Metabotropic Glutamate Receptor Stimulation. Journal of Neuroscience, 2008, 28, 10561-10566.	1.7	169
68	A Role for Ca2+ Stores in Kainate Receptor-Dependent Synaptic Facilitation and LTP at Mossy Fiber Synapses in the Hippocampus. Neuron, 2003, 39, 327-341.	3.8	168
69	Effects of phencyclidine, SKF 10,047 and related psychotomimetic agents on Nâ€methylâ€ <scp>d</scp> â€aspartate receptor mediated synaptic responses in rat hippocampal slices. British Journal of Pharmacology, 1987, 91, 547-556.	2.7	167
70	Long term potentiation in the hippocampus: mechanisms of initiation and modulation by neurotransmitters. Trends in Pharmacological Sciences, 1985, 6, 407-411.	4.0	163
71	Tyrosine Phosphatases Regulate AMPA Receptor Trafficking during Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Journal of Neuroscience, 2006, 26, 2544-2554.	1.7	162
72	Regulation of Synaptic Strength and AMPA Receptor Subunit Composition by PICK1. Journal of Neuroscience, 2004, 24, 5381-5390.	1.7	160

#	Article	IF	CITATIONS
73	A characterisation of longâ€term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. Journal of Physiology, 2001, 537, 421-430.	1.3	158
74	1S,3R-ACPD stimulates and L-AP3 blocks Ca2+ mobilization in rat cerebellar neurons. European Journal of Pharmacology, 1990, 186, 363-365.	1.7	157
75	The physiological regulation of synaptic inhibition by GABAB autoreceptors in rat hippocampus Journal of Physiology, 1993, 472, 245-265.	1.3	155
76	DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology, 1999, 38, 1577-1583.	2.0	152
77	A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience, 2012, 5, 13.	1.4	149
78	Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neuroscience Letters, 1992, 139, 197-200.	1.0	148
79	An Essential Role for PICK1 in NMDA Receptor-Dependent Bidirectional Synaptic Plasticity. Neuron, 2008, 57, 872-882.	3.8	147
80	The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology, 1998, 37, 1445-1458.	2.0	145
81	Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neuroscience Letters, 1989, 105, 205-210.	1.0	143
82	Antagonists of GLUK5-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nature Neuroscience, 2002, 5, 796-804.	7.1	143
83	The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology, 1998, 37, 1269-1277.	2.0	142
84	Inhibitory postâ€synaptic currents in rat hippocampal CA1 neurones Journal of Physiology, 1984, 356, 551-564.	1.3	141
85	Intracellular demonstration of an N-methyl-d-aspartate receptor mediated component of synaptic transmission in the rat hippocampus. Neuroscience Letters, 1985, 60, 19-23.	1.0	141
86	Signal transduction pathways involved in the acute potentiation of NMDA responses by 1 S ,3 R â€ACPD in rat hippocampal slices. British Journal of Pharmacology, 1993, 109, 1085-1090.	2.7	132
87	The Nitric Oxide - Cyclic GMP Pathway and Synaptic Depression in Rat Hippocampal Slices. European Journal of Neuroscience, 1994, 6, 1528-1535.	1.2	131
88	PI3Kγ is required for NMDA receptor–dependent long-term depression and behavioral flexibility. Nature Neuroscience, 2011, 14, 1447-1454.	7.1	126
89	A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nature Neuroscience, 1998, 1, 389-394.	7.1	122
90	Functional Maturation of CA1 Synapses Involves Activity-Dependent Loss of Tonic Kainate Receptor-Mediated Inhibition of Glutamate Release. Neuron, 2006, 50, 415-429.	3.8	121

#	Article	IF	CITATIONS
91	Interactions between Ca2+ mobilizing mechanisms in cultured rat cerebellar granule cells Journal of Physiology, 1992, 456, 667-680.	1.3	120
92	Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD. Neuron, 2005, 47, 487-494.	3.8	120
93	Effects of memantine and MKâ€801 on NMDAâ€induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. British Journal of Pharmacology, 1996, 117, 689-697.	2.7	119
94	Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Molecular Brain, 2015, 8, 81.	1.3	118
95	NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130131.	1.8	116
96	Metabotropic glutamate receptors contribute to the induction of long-term depression in the CA1 region of the hippocampus. European Journal of Pharmacology, 1993, 239, 265-266.	1.7	112
97	Endogenous Activation of Kainate Receptors Regulates Glutamate Release and Network Activity in the Developing Hippocampus. Journal of Neuroscience, 2005, 25, 4473-4484.	1.7	105
98	The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nature Neuroscience, 2018, 21, 50-62.	7.1	105
99	CGP 55845A: A potent antagonist of GABAb receptors in the CA1 region of rat hippocampus. Neuropharmacology, 1993, 32, 1071-1073.	2.0	103
100	Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology, 2001, 41, 700-713.	2.0	101
101	Metabotropic Glutamate Receptor-Mediated LTD Involves Two Interacting Ca2+ Sensors, NCS-1 and PICK1. Neuron, 2008, 60, 1095-1111.	3.8	100
102	The influence of striatal stimulation and putative neurotransmitters on identified neurones in the rat substantia nigra. Brain Research, 1981, 212, 345-359.	1.1	98
103	A novel anti-epileptic agent, perampanel, selectively inhibits AMPA receptor-mediated synaptic transmission in the hippocampus. Neurochemistry International, 2012, 61, 517-522.	1.9	97
104	Pharmacology of postsynaptic metabotropic glutamate receptors in rat hippocampal CA1 pyramidal neurones. British Journal of Pharmacology, 1995, 116, 1859-1869.	2.7	93
105	Pharmacological antagonism of the actions of group II and III mGluR agonists in the lateral perforant path of rat hippocampal slices. British Journal of Pharmacology, 1996, 117, 1457-1462.	2.7	93
106	Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nature Neuroscience, 2010, 13, 1216-1224.	7.1	93
107	Characterisation of UBP296: a novel, potent and selective kainate receptor antagonist. Neuropharmacology, 2004, 47, 46-64.	2.0	92
108	Coâ€activation of p38 mitogenâ€activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptorâ€dependent longâ€ŧerm depression. Journal of Physiology, 2008, 586, 2499-2510.	1.3	92

#	Article	IF	CITATIONS
109	Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus. Brain, 2013, 136, 3753-3765.	3.7	92
110	Introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 607-611.	1.8	91
111	Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. British Journal of Pharmacology, 1996, 119, 195-204.	2.7	90
112	Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses Neuropharmacology, 2001, 41, 907-915.	2.0	86
113	N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7819-7823.	3.3	85
114	Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Scientific Reports, 2015, 5, 10934.	1.6	85
115	Role of Ca ²⁺ Stores in Metabotropicl-Glutamate Receptor-Mediated Supralinear Ca ²⁺ Signaling in Rat Hippocampal Neurons. Journal of Neuroscience, 2000, 20, 8628-8636.	1.7	83
116	Different NMDA receptor subtypes mediate induction of longâ€ŧerm potentiation and two forms of shortâ€ŧerm potentiation at CA1 synapses in rat hippocampus <i>in vitro</i> . Journal of Physiology, 2013, 591, 955-972.	1.3	83
117	Characterization of an N-methyl-d-aspartate receptor component of synaptic transmission in rat hippocampal slices. Neuroscience, 1987, 22, 1-8.	1.1	82
118	GABAB Receptors Couple Directly to the Transcription Factor ATF4. Molecular and Cellular Neurosciences, 2001, 17, 637-645.	1.0	82
119	A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases. Molecular Brain, 2009, 2, 22.	1.3	82
120	A comparison of paired-pulse facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus. Experimental Brain Research, 1994, 101, 272-278.	0.7	81
121	Targeting Synaptic Dysfunction in Alzheimer's Disease Therapy. Molecular Neurobiology, 2012, 46, 572-587.	1.9	80
122	Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus. Journal of Neuroscience, 2016, 36, 622-631.	1.7	80
123	The Small GTPase Arf1 Modulates Arp2/3-Mediated Actin Polymerization via PICK1 to Regulate Synaptic Plasticity. Neuron, 2013, 79, 293-307.	3.8	79
124	The brain slice preparation: a tribute to the pioneer Henry McIlwain. Journal of Neuroscience Methods, 1995, 59, 5-9.	1.3	77
125	Activation of glutamate metabotropic receptors induces long-term potentiation. European Journal of Pharmacology, 1992, 214, 297-298.	1.7	76
126	Activation of the glycine site in the NMDA receptor is necessary for the induction of LTP. Neuroscience Letters, 1990, 108, 261-266.	1.0	75

#	Article	IF	CITATIONS
127	An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology, 1999, 38, 1585-1596.	2.0	75
128	L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. Cell Calcium, 1992, 13, 293-301.	1.1	74
129	A Presynaptic Kainate Receptor Is Involved in Regulating the Dynamic Properties of Thalamocortical Synapses during Development. Neuron, 2002, 34, 635-646.	3.8	74
130	The regulation of hippocampal LTP by the molecular switch, a form of metaplasticity, requires mGlu5 receptors. Neuropharmacology, 2005, 49, 13-25.	2.0	73
131	The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology, 1997, 36, 1477-1481.	2.0	72
132	Calcium stores and synaptic plasticity. Cell Calcium, 2002, 32, 405-411.	1.1	72
133	Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology, 2007, 52, 1-11.	2.0	72
134	Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum, 2018, 24, A103-A120.	0.2	72
135	Synthesis and Pharmacological Characterization of N3-Substituted Willardiine Derivatives:Â Role of the Substituent at the 5-Position of the Uracil Ring in the Development of Highly Potent and Selective GLUK5Kainate Receptor Antagonists. Journal of Medicinal Chemistry, 2007, 50, 1558-1570.	2.9	70
136	Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience, 1996, 75, 69-82.	1.1	69
137	Autism-Misregulated elF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Molecular Cell, 2020, 77, 1176-1192.e16.	4.5	69
138	A novel, competitive mGlu5 receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. British Journal of Pharmacology, 2000, 131, 239-244.	2.7	68
139	The Role of Calcium-Permeable AMPARs in Long-Term Potentiation at Principal Neurons in the Rodent Hippocampus. Frontiers in Synaptic Neuroscience, 2018, 10, 42.	1.3	68
140	Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Molecular and Cellular Neurosciences, 2009, 40, 267-279.	1.0	67
141	Shank mutant mice as an animal model of autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130143.	1.8	67
142	Multiple, Developmentally Regulated Expression Mechanisms of Long-Term Potentiation at CA1 Synapses. Journal of Neuroscience, 2004, 24, 4903-4911.	1.7	66
143	Plasticity of Metabotropic Glutamate Receptor-Dependent Long-Term Depression in the Anterior Cingulate Cortex after Amputation. Journal of Neuroscience, 2012, 32, 11318-11329.	1.7	66
144	A characterization of muscarinic receptor-mediated intracellular Ca2+mobilization in cultured rat hippocampal neurones. Journal of Physiology, 1998, 511, 747-759.	1.3	65

#	Article	IF	CITATIONS
145	Pharmacological evidence for an involvement of group II and group III mGluRs in the presynaptic regulation of excitatory synaptic responses in the CA1 region of rat hippocampal slices. Neuropharmacology, 1995, 34, 973-982.	2.0	64
146	A role for protein kinase C in a form of metaplasticity that regulates the induction of long-term potentiation at CA1 synapses of the adult rat hippocampus. European Journal of Neuroscience, 2000, 12, 4055-4062.	1.2	62
147	A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-1±. Molecular Brain, 2009, 2, 18.	1.3	62
148	Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. Journal of Neuroscience Methods, 1995, 59, 19-24.	1.3	61
149	Effect of Tetanus Toxin on Transmitter Release from the Substantia Nigra and Striatum In Vitro. Journal of Neurochemistry, 1980, 34, 540-547.	2.1	58
150	Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nature Neuroscience, 2002, 5, 835-836.	7.1	57
151	Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. BMC Neuroscience, 2004, 5, 44.	0.8	56
152	Altered Short-Term Synaptic Plasticity in Mice Lacking the Metabotropic Glutamate Receptor mGlu7. Scientific World Journal, The, 2002, 2, 730-737.	0.8	55
153	Pharmacological Investigations of the Dissociative †Legal Highs' Diphenidine, Methoxphenidine and Analogues. PLoS ONE, 2016, 11, e0157021.	1.1	55
154	Hippocampal metabotropic glutamate receptor longâ€ŧerm depression in health and disease: focusÂon mitogenâ€activated protein kinase pathways. Journal of Neurochemistry, 2016, 139, 200-214.	2.1	55
155	Antagonism of the synaptic depressant actions of I-AP4 in the lateral perforant path by MAP4. Neuropharmacology, 1995, 34, 239-241.	2.0	54
156	Ca2+ and synaptic plasticity. Cell Calcium, 1998, 24, 377-385.	1.1	54
157	Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. Journal of Neurophysiology, 2013, 110, 505-521.	0.9	54
158	Ketamine blocks an NMDA receptor-mediated component of synaptic transmission in rat hippocampus in a voltage-dependent manner. Neuroscience Letters, 1988, 92, 213-217.	1.0	53
159	Activation of a K-252b-Sensitive Protein Kinase is Necessary for a Post-Synaptic Phase of Long-Term Potentiation in Area CA1 of Rat Hippocampus. European Journal of Neuroscience, 1990, 2, 481-486.	1.2	53
160	On the mechanism of long-term potentiation induced by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) in rat hippocampal slices. Neuropharmacology, 1995, 34, 1003-1014.	2.0	53
161	The Methylazoxymethanol Acetate (MAM-E17) Rat Model: Molecular and Functional Effects in the Hippocampus. Neuropsychopharmacology, 2012, 37, 364-377.	2.8	53
162	Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP. Neuropharmacology, 1998, 37, 535-544.	2.0	51

#	Article	IF	CITATIONS
163	Protein phosphatase inhibitors facilitate DHPG-induced LTD in the CA1 region of the hippocampus. British Journal of Pharmacology, 2001, 132, 1095-1101.	2.7	51
164	Synthesis and Pharmacology of Willardiine Derivatives Acting as Antagonists of Kainate Receptors. Journal of Medicinal Chemistry, 2005, 48, 7867-7881.	2.9	51
165	In Vitro Effect of Tetanus Toxin on GAB A Release from Rat Hippocampal Slices. Journal of Neurochemistry, 1981, 37, 1039-1041.	2.1	50
166	Structureâ	2.9	50
167	Tyrosine dephosphorylation underlies DHPG-induced LTD. Neuropharmacology, 2002, 43, 175-180.	2.0	49
168	Parallel kinase cascades are involved in the induction of LTP at hippocampal CA1 synapses. Neuropharmacology, 2003, 45, 828-836.	2.0	49
169	Kainate receptors and the induction of mossy fibre long-term potentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 657-666.	1.8	49
170	Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death and Differentiation, 2011, 18, 99-108.	5.0	48
171	Interactions of 2,3â€benzodiazepines and cydothiazide at AMPA receptors: patch clamp recordings in cultured neurones and area CA1 in hippocampal slices. British Journal of Pharmacology, 1996, 117, 1209-1221.	2.7	47
172	Activation of mGlu receptors induces LTD without affecting postsynaptic sensitivity of CA1 neurons in rat hippocampal slices. Journal of Physiology, 2003, 546, 455-460.	1.3	46
173	Intracellular recorded synaptic antagonism in the rat dentate gyrus. Nature, 1982, 300, 450-452.	13.7	45
174	Metabotropic glutamate receptors and calcium signalling in dendrites of hippocampal CA1 neurones. Neuropharmacology, 1993, 32, 1229-1237.	2.0	45
175	NEUROSCIENCE: Enhanced: ZAP and ZIP, a Story to Forget. Science, 2006, 313, 1058-1059.	6.0	45
176	Neuronal calcium sensors and synaptic plasticity. Biochemical Society Transactions, 2009, 37, 1359-1363.	1.6	45
177	An evaluation of d-α-aminoadipate and d-(and dl-)α-aminosuberate as selective antagonists of excitatory amino acids in the substantia nigra and mesencephalic reticular formation of the rat. Neuropharmacology, 1979, 18, 193-199.	2.0	44
178	Activation of the NO-cGMP signalling pathway depresses hippocampal synaptic transmission through an adenosine receptor-dependent mechanism. Neuropharmacology, 1994, 33, 1511-1513.	2.0	44
179	Interactions between NMDA receptors and mGlu5 receptors expressed in HEK293 cells. British Journal of Pharmacology, 2004, 142, 991-1001.	2.7	44
180	ACET is a highly potent and specific kainate receptor antagonist: Characterisation and effects on hippocampal mossy fibre function. Neuropharmacology, 2009, 56, 121-130.	2.0	44

#	Article	IF	CITATIONS
181	Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia. Neuropharmacology, 2012, 62, 1349-1358.	2.0	44
182	G protein–coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammationâ€induced sensitization to excitotoxic neurodegeneration. Annals of Neurology, 2013, 73, 667-678.	2.8	44
183	Actions of substance P and opiates in the rat substantia nigra. Neuropharmacology, 1982, 21, 715-719.	2.0	43
184	Functional roles of protein interactions with AMPA and kainate receptors. Neuroscience Research, 2003, 47, 3-15.	1.0	43
185	Disruption of the interaction between myosin VI and SAP97 is associated with a reduction in the number of AMPARs at hippocampal synapses. Journal of Neurochemistry, 2010, 112, 677-690.	2.1	43
186	A quantitative study of the actions of excitatory amino acids and antagonists in rat hippocampal slices. British Journal of Pharmacology, 1988, 95, 291-299.	2.7	42
187	Similar levels of long-term potentiation in amyloid precursor protein -null and wild-type mice in the CA1 region of picrotoxin treated slices. Neuroscience Letters, 2000, 288, 9-12.	1.0	42
188	Characterisation of the effects of ATPA, a GLUK5 receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices. Neuropharmacology, 2002, 42, 889-902.	2.0	42
189	Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology, 2017, 115, 128-138.	2.0	42
190	6â€Cyanoâ€7â€nitroquinoxalineâ€2,3â€dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus. British Journal of Pharmacology, 1989, 97, 71-76.	2.7	41
191	The GABAB2 subunit is critical for the trafficking and function of native GABAB receptors. Biochemical Pharmacology, 2004, 68, 1655-1666.	2.0	41
192	Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. Biochemical Journal, 1999, 341, 415-422.	1.7	40
193	LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. Journal of Neurochemistry, 2011, 116, 530-543.	2.1	39
194	An electrophysiological characterisation of long-term potentiation in cultured dissociated hippocampal neurones. Neuropharmacology, 2001, 41, 693-699.	2.0	38
195	Antidepressant Actions of Ketamine Versus Hydroxynorketamine. Biological Psychiatry, 2017, 81, e65-e67.	0.7	38
196	Mathematical modelling of nonâ€stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors. Journal of Physiology, 2001, 537, 407-420.	1.3	37
197	The induction of N -methyl-D-aspartate receptor-dependent long-term potentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 635-641.	1.8	37
198	Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-d-aspartate receptors. Neurochemistry International, 2012, 61, 593-600.	1.9	37

#	Article	IF	CITATIONS
199	Kainate Receptors and Mossy Fiber LTP. NeuroToxicology, 2005, 26, 769-777.	1.4	36
200	Synaptoimmunology - roles in health and disease. Molecular Brain, 2017, 10, 26.	1.3	36
201	The roles of STP and LTP in synaptic encoding. PeerJ, 2013, 1, e3.	0.9	36
202	Effects of folic and kainic acids on synaptic responses of hippocampal neurones. Neuroscience, 1984, 11, 111-124.	1.1	35
203	Ammonium ions mobilize calcium from an internal pool which is insensitive to TRH and ionomycin in bovine anterior pituitary cells. Cell Calcium, 1991, 12, 301-312.	1.1	35
204	Carbachol can potentiate responses in the rat hippocampus by a staurosporine and thapsigargin-insensitive mechanism. Neuroscience Letters, 1993, 162, 165-168.	1.0	35
205	Rapid Turnover of Cortical NCAM1 Regulates Synaptic Reorganization after Peripheral Nerve Injury. Cell Reports, 2018, 22, 748-759.	2.9	35
206	Antagonism of baclofen-induced depression of whole-cell synaptic currents in spinal dorsal horn neurones by the potent GABAB antagonist CGP55845. Neuropharmacology, 1993, 32, 1437-1440.	2.0	34
207	A CaMKII inhibitor, KN-62, facilitates DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology, 1999, 38, 605-608.	2.0	34
208	Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. Journal of Neuroscience Methods, 2000, 100, 117-122.	1.3	34
209	Synaptic transmission and synchronous activity is disrupted in hippocampal slices taken from aged TAS10 mice. Hippocampus, 2005, 15, 110-117.	0.9	34
210	Mechanisms Involved in the Reduction of GABAA Receptor α1-Subunit Expression Caused by the Epilepsy Mutation A322D in the Trafficking-competent Receptor. Journal of Biological Chemistry, 2008, 283, 22043-22050.	1.6	34
211	Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs. Molecular Brain, 2011, 4, 30.	1.3	34
212	Whole-cell patch-clamp recordings of an NMDA receptor-mediated synaptic current in rat hippocampal slices. Neuroscience Letters, 1990, 114, 191-196.	1.0	33
213	Study of Novel Selective mGlu2 Agonist in the Temporo-Ammonic Input to CA1 Neurons Reveals Reduced mGlu2 Receptor Expression in a Wistar Substrain with an Anxiety-Like Phenotype. Journal of Neuroscience, 2011, 31, 6721-6731.	1.7	33
214	Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus. Neuropharmacology, 2017, 112, 76-83.	2.0	33
215	<scp>NMDAR</scp> â€dependent Argonaute 2 phosphorylation regulates mi <scp>RNA</scp> activity and dendritic spine plasticity. EMBO Journal, 2018, 37, .	3.5	32
216	NMDA Receptor-dependent Transient Homo- and Heterosynaptic Depression in Picrotoxin-treated Hippocampal Slices. European Journal of Neuroscience, 1992, 4, 485-490.	1.2	31

#	Article	IF	CITATIONS
217	Regulation of depolarizing GABAA receptor-mediated synaptic potentials by synaptic activation of GABAB autoreceptors in the rat hippocampus. Neuropharmacology, 1999, 38, 1723-1732.	2.0	31
218	Synaptic depression induced by pharmacological activation of metabotropic glutamate receptors in the perirhinal cortex in vitro. Neuroscience, 1999, 93, 977-984.	1.1	31
219	Inhibition of Kainate Receptors Reduces the Frequency of Hippocampal Theta Oscillations. Journal of Neuroscience, 2007, 27, 2212-2223.	1.7	31
220	Synaptic plasticity: long-term potentiation in the hippocampus. Current Opinion in Neurobiology, 1992, 2, 328-335.	2.0	30
221	Inactivation of the Constitutively Active Ghrelin Receptor Attenuates Limbic Seizure Activity in Rodents. Neurotherapeutics, 2012, 9, 658-672.	2.1	30
222	An investigation of the expression mechanism of LTP of AMPA receptor-mediated synaptic transmission at hippocampal CA1 synapses using failures analysis and dendritic recordings. Neuropharmacology, 1998, 37, 1399-1410.	2.0	29
223	The in vitro inhibition of GABA release by tetanus toxin. Neuropharmacology, 1982, 21, 851-855.	2.0	28
224	Les agents provocateurs: A series on the pharmacology of excitatory amino acids. Trends in Pharmacological Sciences, 1990, 11, 22-24.	4.0	28
225	Antagonist activity of α-substituted 4-carboxyphenylglycine analogues at group I metabotropic glutamate receptors expressed in CHO cells. British Journal of Pharmacology, 1999, 126, 205-210.	2.7	28
226	Longâ€ŧerm depression of synaptic transmission in the adult mouse insular cortex <i>in vitro</i> . European Journal of Neuroscience, 2013, 38, 3128-3145.	1.2	28
227	Effects of PI3Kβ overexpression in the hippocampus on synaptic plasticity and spatial learning. Molecular Brain, 2014, 7, 78.	1.3	28
228	Group I mGluRs modulate the pattern of non-synaptic epileptiform activity in the hippocampus. Neuropharmacology, 2002, 43, 141-146.	2.0	27
229	Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices of GABAB1 receptor subunit knockout mice. Epilepsy Research, 2003, 57, 121-136.	0.8	27
230	Synaptic Plasticity in the Hippocampal Slice Preparation. Current Protocols in Neuroscience, 2011, 54, Unit 6.13.	2.6	27
231	PKA drives an increase in AMPA receptor unitary conductance during LTP in the hippocampus. Nature Communications, 2021, 12, 413.	5.8	27
232	Antidromic latency variations of nigral compacta neurones. Experientia, 1980, 36, 970-971.	1.2	26
233	Antagonists reversibly reverse chemical LTD induced by group I, group II and group III metabotropic glutamate receptors. Neuropharmacology, 2013, 74, 135-146.	2.0	26
234	Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist. Neuropharmacology, 2013, 66, 114-121.	2.0	26

#	Article	IF	CITATIONS
235	Some distorted thoughts about ketamine as a psychedelic and a novel hypothesis based on NMDA receptor-mediated synaptic plasticity. Neuropharmacology, 2018, 142, 30-40.	2.0	26
236	The action of some analogues of the excitatory amino acids in the dentate gyrus of the rat. Canadian Journal of Physiology and Pharmacology, 1984, 62, 424-429.	0.7	25
237	NMDA receptor dependence of mGluâ€mediated depression of synaptic transmission in the CA1 region of the rat hippocampus. British Journal of Pharmacology, 1996, 119, 1239-1247.	2.7	25
238	Rapid regulation of endoplasmic reticulum dynamics in dendritic spines by NMDA receptor activation. Molecular Brain, 2014, 7, 60.	1.3	25
239	Voltageâ€clamp analysis of somatic gammaâ€aminobutyric acid responses in adult rat hippocampal CA1 neurones in vitro Journal of Physiology, 1987, 384, 27-37.	1.3	24
240	A question of reliability. Nature, 1994, 371, 652-653.	13.7	24
241	Ephenidine: A new psychoactive agent with ketamine-like NMDA receptor antagonist properties. Neuropharmacology, 2017, 112, 144-149.	2.0	24
242	Involvement of excitatory amino acid receptors in long-term potentiation in the Schaffer collateral–commissural pathway of rat hippocampal slices. Canadian Journal of Physiology and Pharmacology, 1991, 69, 1084-1090.	0.7	23
243	GluR2 protein-protein interactions and the regulation of AMPA receptors during synaptic plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 715-720.	1.8	23
244	Editorial. Neuropharmacology, 2009, 56, 1.	2.0	23
245	Electrogenic uptake contributes a major component of the depolarizing action of <scp>l</scp> â€glutamate in rat hippocampal slices. British Journal of Pharmacology, 1991, 102, 355-362.	2.7	22
246	Impairment in hippocampal long-term potentiation in mice under-expressing the Alzheimer's disease related gene presenilin-1. Neuroscience Letters, 2002, 319, 37-40.	1.0	22
247	Characterisation of the effects of ATPA, a GLUK5 kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices. Neuropharmacology, 2004, 47, 363-372.	2.0	22
248	Erasing injury-related cortical synaptic potentiation as a new treatment for chronic pain. Journal of Molecular Medicine, 2011, 89, 847-855.	1.7	22
249	Rapid behavioural and biochemical effects of tetanus toxin microinjected into the substantia nigra: A dual role for GABA?. Neuroscience Letters, 1979, 11, 205-208.	1.0	20
250	Selective activation of either mGlu2 or mGlu3 receptors can induce LTD in the amygdala. Neuropharmacology, 2013, 66, 196-201.	2.0	20
251	Ca2+stores and hippocampal synaptic plasticity. Seminars in Neuroscience, 1996, 8, 301-309.	2.3	19
252	Piperazine-2,3-dicarboxylic Acid Derivatives as Dual Antagonists of NMDA and GluK1-Containing Kainate Receptors. Journal of Medicinal Chemistry, 2012, 55, 327-341.	2.9	19

#	Article	IF	CITATIONS
253	On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus. Frontiers in Synaptic Neuroscience, 2019, 11, 4.	1.3	19
254	Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nature Communications, 2020, 11, 423.	5.8	19
255	Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. Biochemical Journal, 1999, 341, 415.	1.7	17
256	Hippocampal synaptic plasticity in mice carrying the rd mutation in the gene encoding cGMP phosphodiesterase type 6 (PDE6). Brain Research, 2003, 967, 144-151.	1.1	17
257	Promiscuous Interactions between AMPA-Rs and MAGUKs. Neuron, 2006, 52, 222-224.	3.8	17
258	The use of the hippocampal slice preparation in the study of Alzheimer's disease. European Journal of Pharmacology, 2008, 585, 50-59.	1.7	17
259	Synergistic interactions between kainate and mGlu receptors regulate bouton Ca2+ signalling and mossy fibre LTP. Scientific Reports, 2011, 1, 103.	1.6	17
260	Rapid endocytosis provides restricted somatic expression of a K+ channel in central neurons. Journal of Cell Science, 2009, 122, 4186-4194.	1.2	16
261	Trans-Modulation of the Somatostatin Type 2A Receptor Trafficking by Insulin-Regulated Aminopeptidase Decreases Limbic Seizures. Journal of Neuroscience, 2015, 35, 11960-11975.	1.7	16
262	Differential ability of the dorsal and ventral rat hippocampus to exhibit group I metabotropic glutamate receptor–dependent synaptic and intrinsic plasticity. Brain and Neuroscience Advances, 2017, 1, 239821281668979.	1.8	16
263	Quinoxalinediones as Excitatory Amino Acid Antagonists in The Vertebrate Central Nervous System. International Review of Neurobiology, 1990, 32, 281-303.	0.9	15
264	In vitro translation and membrane topology of rat recombinant mGluR 1α. Neuropharmacology, 1994, 33, 1065-1070.	2.0	15
265	Mechanism and properties of positive allosteric modulation of N -methyl- d -aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology, 2017, 125, 64-79.	2.0	15
266	Expression of early hippocampal CA1 LTP does not lead to changes in AMPA-EPSC kinetics or sensitivity to cyclothiazide. Pflugers Archiv European Journal of Physiology, 1999, 437, 191-196.	1.3	14
267	The effect of kainic acid on excitatory synaptic activity in the rat hippocampal slice preparation. Neuroscience Letters, 1981, 27, 31-36.	1.0	13
268	A study of long-term potentiation in transgenic mice over-expressing mutant forms of both amyloid precursor protein and presenilin-1. Molecular Brain, 2010, 3, 21.	1.3	13
269	Synaptic Kainate Receptors in CA1 Interneurons Gate the Threshold of Theta-Frequency-Induced Long-Term Potentiation. Journal of Neuroscience, 2012, 32, 18215-18226.	1.7	13
270	Differences in kainate receptor involvement in hippocampal mossy fibre long-term potentiation depending on slice orientation. Neurochemistry International, 2012, 61, 482-489.	1.9	13

#	Article	IF	CITATIONS
271	Characterisation of an mGlu8 receptor-selective agonist and antagonist in the lateral and medial perforant path inputs to the dentate gyrus. Neuropharmacology, 2013, 67, 294-303.	2.0	13
272	The Probability of Neurotransmitter Release Governs AMPA Receptor Trafficking via Activity-Dependent Regulation of mGluR1 Surface Expression. Cell Reports, 2018, 25, 3631-3646.e3.	2.9	13
273	Developmental regulation of hippocampal long-term depression by cofilin-mediated actin reorganization. Neuropharmacology, 2017, 112, 66-75.	2.0	12
274	Synaptic Plasticity in the Hippocampal Slice Preparation. Current Protocols in Neuroscience, 2001, 16, Unit 6.13.	2.6	11
275	An analysis of the stimulus requirements for setting the molecular switch reveals a lower threshold for metaplasticity than synaptic plasticity. Neuropharmacology, 2008, 55, 454-458.	2.0	11
276	GSKâ€3β regulates the synaptic expression of NMDA receptors via phosphorylation of phosphatidylinositol 4 kinase type IIα. European Journal of Neuroscience, 2021, 54, 6815-6825.	1.2	11
277	The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation. PLoS ONE, 2016, 11, e0147293.	1.1	11
278	Electrophysiological evidence for the existence of crossed nigrostriatal fibers. Experientia, 1982, 38, 812-813.	1.2	10
279	Wavelet Transform-Based De-Noising for Two-Photon Imaging of Synaptic Ca 2+ Transients. Biophysical Journal, 2013, 104, 1006-1017.	0.2	10
280	Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid. European Journal of Medicinal Chemistry, 2019, 164, 471-498.	2.6	10
281	Multiple roles of GluN2D-containing NMDA receptors in short-term potentiation and long-term potentiation in mouse hippocampal slices. Neuropharmacology, 2021, 201, 108833.	2.0	10
282	Modulation of synaptic transmission in the rat ventral septal area by the pharmacological activation of metabotropic glutamate receptors. European Journal of Neuroscience, 2000, 12, 1843-1847.	1.2	9
283	Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices expressing a C-terminal truncated GABAB2 receptor subunit. Epilepsy Research, 2005, 65, 41-51.	0.8	9
284	Automated multi-slice extracellular and patch-clamp experiments using the WinLTP data acquisition system with automated perfusion control. Journal of Neuroscience Methods, 2012, 207, 148-160.	1.3	9
285	Strippers Reveal Their Depressing Secrets: Removing AMPA Receptors. Neuron, 2014, 82, 3-6.	3.8	9
286	Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known N-Methyl-d-aspartate Receptor Allosteric Modulators. Synthesis, 2015, 47, 1593-1610.	1.2	9
287	Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. Behavioural Brain Research, 2020, 381, 112420.	1.2	9
288	Evidence that a novel metabotropic glutamate receptor mediates the induction of long-term potentiation at CAI synapses in the hippocampus. Biochemical Society Transactions, 1999, 27, 170-174.	1.6	8

#	Article	IF	CITATIONS
289	Illuminating Relationships Between the Pre- and Post-synapse. Frontiers in Neural Circuits, 2020, 14, 9.	1.4	8
290	Further evidence that CP-AMPARs are critically involved in synaptic tag and capture at hippocampal CA1 synapses. Molecular Brain, 2021, 14, 26.	1.3	8
291	Decellularization of porcine kidney with submicellar concentrations of SDS results in the retention of ECM proteins required for the adhesion and maintenance of human adult renal epithelial cells. Biomaterials Science, 2022, 10, 2972-2990.	2.6	8
292	REVERSIBLE EFFECTS OF TETANUS TOXIN ON STRIATALâ€EVOKED RESPONSES AND [³ H]â€Î³â€AMINOBUTYRIC ACID RELEASE IN THE RAT SUBSTANTIA NIGRA. British Journal of Pharmacology, 1982, 76, 403-411.	2.7	7
293	Expanding the potential. Nature, 1993, 364, 104-105.	13.7	7
294	The induction of long-term plasticity of non-synaptic, synchronized activity by the activation of group I mGluRs. Neuropharmacology, 2008, 55, 459-463.	2.0	7
295	reply: Kainate receptors and synaptic plasticity. Nature, 2000, 406, 957-957.	13.7	6
296	Chapter 2 Gluk1 Receptor Antagonists and Hippocampal Mossy Fiber Function. International Review of Neurobiology, 2009, 85, 13-27.	0.9	6
297	Differential sensitivity of three forms of hippocampal synaptic potentiation to depotentiation. Molecular Brain, 2019, 12, 30.	1.3	6
298	Optogenetic Manipulation of Postsynaptic cAMP Using a Novel Transgenic Mouse Line Enables Synaptic Plasticity and Enhances Depolarization Following Tetanic Stimulation in the Hippocampal Dentate Gyrus. Frontiers in Neural Circuits, 2020, 14, 24.	1.4	6
299	Synthesis and pharmacological characterisation of arctigenin analogues as antagonists of AMPA and kainate receptors. Organic and Biomolecular Chemistry, 2021, 19, 9154-9162.	1.5	6
300	Selective Recruitment of Presynaptic and Postsynaptic Forms of mGluR-LTD. Frontiers in Synaptic Neuroscience, 2022, 14, .	1.3	6
301	Mechanisms involved in hippocampal LTP: implications for retrograde messengers. Seminars in Neuroscience, 1993, 5, 189-195.	2.3	5
302	An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber longâ€ŧerm potentiation in vivo. Hippocampus, 2015, 25, 1407-1417.	0.9	5
303	(2 <i>S</i> ,6 <i>S</i>)- and (2 <i>R</i> ,6 <i>R</i>)-hydroxynorketamine inhibit the induction of NMDA receptor-dependent LTP at hippocampal CA1 synapses in mice. Brain and Neuroscience Advances, 2020, 4, 239821282095784.	1.8	5
304	The anabolic effect of inorganic polyphosphate on chondrocytes is mediated by calcium signalling. Journal of Orthopaedic Research, 2022, 40, 310-322.	1.2	5
305	Whole-Cell Patch Recording with Simultaneous Measurement of Intracellular Calcium Concentration in Mammalian Brain Slices in Vitro. Methods in Neurosciences, 1994, 19, 340-358.	0.5	4
306	GFP Fusion proteins and AMPA receptor trafficking. Biochemical Society Transactions, 1997, 25, 540S-540S.	1.6	4

#	Article	IF	CITATIONS
307	Metabotropic glutamate receptors, 5 years on. Neuropharmacology, 2017, 115, 1-3.	2.0	4
308	Amino ACID Receptor-Mediated Synaptic Currents in the CA1 Region of the Hippocampus. , 1992, 3, 63-81.		4
309	The GSK-3 Inhibitor CT99021 Enhances the Acquisition of Spatial Learning and the Accuracy of Spatial Memory. Frontiers in Molecular Neuroscience, 2021, 14, 804130.	1.4	4
310	Endocannabinoids. Neuron, 2004, 43, 762-764.	3.8	3
311	Learning about Synaptic GluA3. Neuron, 2017, 93, 254-256.	3.8	3
312	The continually evolving role of NMDA receptors in neurobiology and disease. Neuropharmacology, 2022, 210, 109042.	2.0	3
313	CHARACTERIZATION OF A CALCIUM-ACTIVATED CYTIDINE TRIPHOSPHATE PHOSPHOHYDROLASE PRESENT IN DORSAL SPINAL NERVE ROOTS. Journal of Neurochemistry, 1978, 31, 681-684.	2.1	2
314	Characterization of synaptic components in rat hippocampal slices using whole cell patch clamp techniques. Biochemical Society Transactions, 1990, 18, 430-431.	1.6	2
315	Simultaneous Ca2+ imaging and electrophysiological analysis demonstrate source of Ca2+ for EAA receptors. Trends in Pharmacological Sciences, 1991, 12, 169-170.	4.0	2
316	Synaptic plasticity: long-term potentiation in the hippocampus. Current Biology, 1992, 2, 292.	1.8	2
317	Calcium transients in voltage-clamped dendrites of hippocampal neurons evoked by different patterns of synaptic activity. Biochemical Society Transactions, 1995, 23, 653-655.	1.6	2
318	Ionotropic glutamate receptors: Still exciting after all these years. Neuropharmacology, 2017, 112, 1-3.	2.0	2
319	The Hippocampus Is the Place to Be: Opioid Receptors and LTP. Cell Reports, 2019, 28, 1117-1118.	2.9	2
320	A tribute to Chris Parsons. Neuropharmacology, 2021, 195, 108633.	2.0	2
321	Specific Role for GSK3α in Limiting Long-Term Potentiation in CA1 Pyramidal Neurons of Adult Mouse Hippocampus. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	2
322	2008 Eruptions in metabotropic glutamate receptors. Neuropharmacology, 2008, 55, 391.	2.0	1
323	Introduction to the special issue on High Resolution Neuropharmacology. Neuropharmacology, 2011, 60, 1-2.	2.0	1
324	Regulation of Hippocampal mGluR-Dependent Long-Term Depression by GluA2-Dependent		1

Cofilin-Mediated Actin Remodeling. , 2017, , 225-239.

#	Article	IF	CITATIONS
325	From Excitatory Amino Acid Receptors to Long-Term Potentiation: An Insight into the Role of Ca2+. , 1991, , 43-53.		1
326	Delineation of the Physiological Role of Kainate Receptors by Use of Subtype Selective Ligands. , 2004, , 27-46.		1
327	Learning by handshake?. Nature, 1989, 339, 588-588.	13.7	0
328	Stereoselective antagonism of the metabotropic glutamate receptor mGluR1α by α-methyl-4-carboxyphenylglycine. Biochemical Society Transactions, 1994, 22, 138S-138S.	1.6	0
329	Corrigendum to: Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum, 2018, 24, A91-A91.	0.2	0
330	Corrigendum zu: Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neuroforum, 2018, 24, 305-305.	0.2	0
331	Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neuroforum, 2018, 24, 163-185.	0.2	0