Emily J Parker

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6975439/publications.pdf
Version: 2024-02-01

Aminoacylation of Indole Diterpenes by Cluster-Specific Monomodular NRPS-like Enzymes. Organic
Letters, 2022, 24, 2332-2337.

Reciprocal allostery arising from a bienzyme assembly controls aromatic amino acid biosynthesis in Prevotella nigrescens. Journal of Biological Chemistry, 2021, 297, 101038.

Diverse allosteric componentry and mechanisms control entry into aromatic metabolite biosynthesis. Current Opinion in Structural Biology, 2020, 65, 159-167.

Editorial overview: Catalysis and regulation. Current Opinion in Structural Biology, 2020, 65, iii-iv.
5.7

A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme
in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2020, 295, 6252-6262.

Domain cross-talk within a bifunctional enzyme provides catalytic and allosteric functionality in the
biosynthesis of aromatic amino acids. Journal of Biological Chemistry, 2019, 294, 4828-4842.

Nodulisporic acid E biosynthesis: in vivo characterisation of NodD1, an indole-diterpene
7 prenyltransferase that acts on an emindole SB derived indole-diterpene scaffold. MedChemComm,
2019, 10, 1160-1164.
Hinge Twists and Population Shifts Deliver Regulated Catalysis for ATP-PRT in Histidine Biosynthesis.
8 Biophysical Journal, 2019, 116, 1887-1897.

9 Exploring modular allostery via interchangeable regulatory domains. Proceedings of the National
9 Academy of Sciences of the United States of America, 2018, 115, 3006-3011.

10 MIDAS: A Modular DNA Assembly System for Synthetic Biology. ACS Synthetic Biology, 2018, 7, 1018-1029.
3.8

42

11	Heterologous Biosynthesis of Nodulisporic Acid F. Journal of the American Chemical Society, 2018, 140, 582-585.	13.7	39
12	A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase. Biochemical Journal, 2018, 475, 247-260.	3.7	12
13	A Pseudoisostructural Type II DAH7PS Enzyme from <i>Pseudomonas aeruginosa<\|i〉: Alternative Evolutionary Strategies to Control Shikimate Pathway Flux. Biochemistry, 2018, 57, 2667-2678.	2.5	14
14	Anthranilate phosphoribosyltransferase: Binding determinants for 5â $€^{2}$-phospho-alpha- d -ribosyl-1â $€^{2}$-pyrophosphate (PRPP) and the implications for inhibitor design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 264-274.	2.3	5
15	Structural and functional characterisation of the entry point to pyocyanin biosynthesis in <i>Pseudomonas aeruginosa</i> defines a new 3-deoxy-<scp>d</scp>-arabino-heptulosonate 7-phosphate synthase subclass. Bioscience Reports, 2018, 38, .	2.4	14

Draft Genome Sequence of the Filamentous Fungus <i>Hypoxylon pulicicidum</i> ATCC 74245. Genome Announcements, 2018, 6, .
$\hat{a} €^{`} T$ Tethering $\hat{A}^{T M} €^{T M}$ fragment-based drug discovery to identify inhibitors of the essential respiratory membrane protein type II NADH dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2239-2243.
protein

19 Datasets, processing and refinement details for Mtb -AnPRT: inhibitor structures with various space groups. Data in Brief, 2017, 15, 1019-1029.

Quaternary structure is an essential component that contributes to the sophisticated allosteric regulation mechanism in a key enzyme from Mycobacterium tuberculosis. PLoS ONE, 2017, 12, e0180052.
2.5

18

Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using á'...Amino Acids. PLoS ONE, 2016, 11, e0152723.
<i>Campylobacter jejuni</i> adenosine triphosphate phosphoribosyltransferase is an active hexamer
22 that is allosterically controlled by the twisting of a regulatory tail. Protein Science, 2016, 25, 1492-1506.

23 Independent catalysis of the short form HisG from <i>Lactococcus lactis</i>. FEBS Letters, 2016, 590,
2603-2610.

Interdomain Conformational Changes Provide Allosteric Regulation en Route to Chorismate. Journal of Biological Chemistry, 2016, 291, 21836-21847.
3.4

First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an
25 autoinhibited tetramer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2394-2399.

26 On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry, 2016, 55, 1681-1688. Calculated p<i>K</i>_a Variations Expose Dynamic Allosteric Communication Networks.
Calculated p<i>K</i>_a Variations Expose Dynamic Allo
Journal of the American Chemical Society, 2016, 138, 2036-2045.

The Functional Unit of Neisseria meningitidis 3-Deoxy-á...-Arabino-Heptulosonate 7-Phosphate Synthase Is
The Functional Unit of Neisseria meningiti
Dimeric. PLoS ONE, 2016, 11, e0145187.
Structures of 〈i>Mycobacterium tuberculosis</i> Anthranilate Phosphoribosyltransferase Variants
29 Reveal the Conformational Changes That Facilitate Delivery of the Substrate to the Active Site. Biochemistry, 2015, 54, 6082-6092.

30 The Molecular Basis for the Substrate Specificity of Protein Tyrosine Phosphatase PTPN3. Structure, 2015, 23, 608-609.
$3.3 \quad 6$
2.5

6
.

Complex Formation between Two Biosynthetic Enzymes Modifies the Allosteric Regulatory Properties
of Both. Journal of Biological Chemistry, 2015, 290, 18187-18198.
Structural analysis of substrate-mimicking inhibitors in complex with Neisseria meningitidis
32 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase â€" The importance of accommodating the active
$\begin{array}{ll}4.1 & 7\end{array}$
site water. Bioorganic Chemistry, 2014, 57, 242-250.
33 Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism. Current Opinion in Structural Biology, 2014, 29, 102-111.
5.7

64

Editorial overview: Catalysis and regulation: Enzyme catalysis, biosynthetic pathways and regulation.
Current Opinion in Structural Biology, 2014, 29, iv-v.
Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by
35 anthranilate phosphoribosyltransferase from <i>Mycobacterium tuberculosis</i>. Biochemical
3.7

18
Journal, 2014, 461, 87-98.
Substrate-mediated control of the conformation of an ancillary domain delivers a competent

$$
2014,82,2054-2066
$$

37

> | Modifying the determinants of $\hat{I} \pm a ̂ € k e t o a c i d ~ s u b s t r a t e ~ s e l e c t i v i t y ~ i n ~<i>~ m y c o b a c t e r i u m ~ t u b e r c u l o s i s</ i>~$ |
| :--- |
| $\hat{I} \pm a ̂ € i s o p r o p y l m a l a t e ~ s y n t h a s e . ~ F E B S ~ L e t t e r s, ~$ |

2.8

12

Probing the determinants of phosphorylated sugar-substrate binding for human sialic acid synthase.
Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2257-2264.
2.3

4

Destabilization of the Homotetrameric Assembly of 3-Deoxy-d-Arabino-Heptulosonate-7-Phosphate
4.2

13
Molecular Biology, 2014, 426, 656-673.
40 Change in Heat Capacity for Enzyme Catalysis Determines Temperature Dependence of Enzyme Catalyzed
$3.4 \quad 164$
Rates. ACS Chemical Biology, 2013, 8, 2388-2393.

Biochemical and structural characterisation of dehydroquinate synthase from the New Zealand
Biochemical and structural characterisation of dehydroquinate synthase from the New Zeal
kiwifruit Actinidia chinensis. Archives of Biochemistry and Biophysics, 2013, 537, 185-191.
$3.0 \quad 18$

42 Active site plasticity of a critical enzyme from Mycobacterium tuberculosis. RSC Advances, 2013, 3,
3209.

Engineering allosteric control to an unregulated enzyme by transfer of a regulatory domain.
Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2111-2116.
7.1

44
43

Amino-acid substitutions at the domain interface affect substrate and allosteric inhibitor binding in $44 \hat{I}_{ \pm}$-isopropylmalate synthase from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2013, 433, 249-254.

45	Three Sites and You Are Out: Ternary Synergistic Allostery Controls Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis. Journal of Molecular Biology, 2013, 425, 1582-1592.	4.2	38
46	Allosteric inhibitor specificity of <i>Thermotoga maritima</i> 3â€ $€$ leoxyâ $€<s c p>d</ s c p>a ̂ € \propto i>a r a b i n o</ i>a ̂ € h e p t u l o s o n a t e ~ 7 a ̂ € p h o s p h a t e ~ s y n t h a s e . ~ F E B S ~ L e t t e r s, ~ 2013, ~ 587, ~$ 3063-3068.	2.8	9
47	Examining the Role of Intersubunit Contacts in Catalysis by 3-Deoxy-<scp>d</scp>-<i>manno-octulosonate 8-Phosphate Synthase. Biochemistry, 2013, 52, 4676-4686.	2.5	3

48 Arg314 Is Essential for Catalysis by <i>N</i>-Acetyl Neuraminic Acid Synthase from <i> Neisseria meningitidis</i>. Biochemistry, 2013, 52, 2609-2619.
2.5

9
The Substrate Capture Mechanism of Mycobacterium tuberculosis Anthranilate
$49 \quad$ Phosphoribosyltransferase Provides a Mode for Inhibition. Biochemistry, 2013, 52, 1776-1787.

Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium
50 paxilli. Toxins, 2013, 5, 1422-1446.
3.4

29
<i>Neisseria meningitidis</i> expresses a single 3â€deoxyâ€ $<$ scp>d</scp>â€ $<$ i> arabino</i>â€heptulosonate

$7.6 \quad 26$

Key Targets and Relevant Inhibitors for the Drug Discovery of Tuberculosis. Current Drug Targets,
2.1

8
2013, 14, 676-699.

Removal of the C-Terminal Regulatory Domain of $\hat{I}_{ \pm}$-Isopropylmalate Synthase Disrupts Functional
Substrate Binding. Biochemistry, 2012, 51, 2289-2297.
2.5
Using a Combination of Computational and Experimental Techniques to Understand the Molecular
Basis for Protein Allostery. Advances in Protein Chemistry and Structural Biology, 2012, 87, 391-413.
Synthesis and evaluation of tetrahedral intermediate mimic inhibitors of
56 3-deoxy-d-manno-octulosonate 8-phosphate synthase. Bioorganic and Medicinal Chemistry Letters, 2.2 8
2012, 22, 907-911.dehydroquinate synthase. Organic and Biomolecular Chemistry, 2011, 9, 2861.
57 Fluorinated substrates result in variable leakage of a reaction intermediate during catalysis by
An Extended 1 127Î ± 7 Substrate-Binding Loop Is Essential for Efficient Catalysis by
58 3-Deoxy-<scp>d</scp>-<i>manno</i>-Octulosonate 8-Phosphate Synthase. Biochemistry, 2011,50, 5
9318-9327.

59	Synthesis and evaluation of dual site inhibitors of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5092-5097.	2.2	13
60	Investigating the role of the hydroxyl groups of substrate erythrose 4-phosphate in the reaction catalysed by the first enzyme of the shikimate pathway. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6838-6841.	2.2	4
61	Targeting the Role of a Key Conserved Motif for Substrate Selection and Catalysis by 3-Deoxy-<scp>d</scp>-<i>manno</i>-octulosonate 8-Phosphate Synthase. Biochemistry, 2011, 50, 3686-3695.	2.5	7

$1.8 \quad 2$
63 Tyrosine Latching of a Regulatory Gate Affords Allosteric Control of Aromatic Amino Acid Biosynthesis. Journal of Biological Chemistry, 2011, 286, 10216-10224.$3.4 \quad 56$
Potent Inhibitors of a Shikimate Pathway Enzyme from Mycobacterium tuberculosis. Journal of

73
74
75
76
77

73 3-deoxy-d-manno-octulosonate 8-phosphate synthase. Bioorganic and Medicinal Chemistry, 2008, 16,
3.0

10 9830-9836.

The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycological Research,
2.5

136 2008, 112, 184-199.
$3.4 \quad 65$ 16829-16837.

Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. FEBS Letters, 2006, 580, 1625-1630.
2.8

62
78 A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of 78 perennial ryegrass confers protection to the symbiotum from insect herbivory. Molecular 2.5 Microbiology, 2005, 57, 1036-1050.

79 Stereospecific deuteration of 2-deoxyerythrose 4-phosphate using 3-deoxy-D-arabino-heptulosonate
7-phosphate synthase. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2339-2342.
2.29

80 $\begin{aligned} & \text { Crystallization and preliminary X-ray crystallographic analysis of } \\ & \text { 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase fromMycobacterium tuberculosis. Acta } \\ & \text { Crystallographica Section F: Structural Biology Communications, 2005, 61, 403-406. } \\ & 81 \quad \begin{array}{l}\text { Characterization of a recombinant type II 3-deoxy-D-arabino-heptulosonate-7-phosphate synthas } \\ \text { Helicobacter pylori. Biochemical Journal, 2005, 390, 223-230. }\end{array} \\ & \text { The Structure of 3-Deoxy-d-arabino-heptulosonate 7-phosphate Synthase from Mycobacterium }\end{aligned}$ tuberculosis Reveals a Common Catalytic Scaffold and Ancestry for Type I and Type II Enzymes. Journal
4.2 of Molecular Biology, 2005, 354, 927-939.

83	Mechanistic divergence of two closely related aldol-like enzyme-catalysed reactions. Organic and Biomolecular Chemistry, 2005, 3, 4046.	2.8	20
84	Substrate Ambiguity and Crystal Structure of Pyrococcus furiosus 3-Deoxy-d-arabino-heptulosonate-7-phosphate Synthase:â€\% An Ancestral 3-Deoxyald-2-ulosonate-phosphate Synthase?,. Biochemistry, 2005, 44, 11950-11962.	2.5	49
85	Identification of 4-Amino-4-deoxychorismate Synthase as the Molecular Target for the Antimicrobial Action of (6S)-6-Fluoroshikimate. Journal of the American Chemical Society, 2004, 126, 9912-9913.	13.7	39

86 Expression, purification, and characterization of 3-deoxy-d-arabino-heptulosonate 7-phosphate
1.3

32
synthase from Pyrococcus furiosus. Protein Expression and Purification, 2004, 34, 17-27.

87 Enzymic synthesis of 3-[3-13C]dehydroquinic acid. Organic and Biomolecular Chemistry, 2003, 1, 3271. 2.8

Screening of New Zealand Native White-Rot Isolates for PCP Degradation. Bioremediation Journal, 2003, 7, 119-128.

Substrate Deactivation of Phenylalanine-Sensitive 3-Deoxy-d-arabino-heptulosonate 7-Phosphate Synthase by Erythrose 4-Phosphateâ€. Biochemistry, 2001, 40, 14821-14828. 3.2

